TY - JOUR
T1 - Mortality Prediction by Quantitative PET Perfusion Expressed as Coronary Flow Capacity With and Without Revascularization
AU - Gould, K. Lance
AU - Kitkungvan, Danai
AU - Johnson, Nils P.
AU - Nguyen, Tung
AU - Kirkeeide, Richard
AU - Bui, Linh
AU - Patel, Monica B.
AU - Roby, Amanda E.
AU - Madjid, Mohammad
AU - Zhu, Hongjian
AU - Lai, Dejian
N1 - Publisher Copyright:
© 2021 The Authors
PY - 2021/5
Y1 - 2021/5
N2 - Objectives: This study sought to determine the relationship between the severity of reduced quantitative perfusion parameters and mortality with and without revascularization. Background: The physiological mechanisms for differential mortality risk of coronary flow reserve (CFR) and coronary flow capacity (CFC) before and after revascularization are unknown. Methods: Global and regional rest-stress (ml/min/g), CFR, their regional per-pixel combination as CFC, and relative stress in ml/min/g were measured as percent of LV in all serial routine 5,274 diagnostic PET scans with systematic follow-up over 10 years (mean 4.2 ± 2.5 years) for all-cause mortality with and without revascularization. Results: Severely reduced CFR of 1.0 to 1.5 and stress perfusion ≤1.0 cc/min/g incurred increasing size-dependent risks that were additive because regional severely reduced CFC (CFCsevere) was associated with the highest major adverse cardiac event rate of 80% (p < 0.0001 vs. either alone) and a mortality risk of 14% (vs. 2.3% for no CFCsevere; p = 0.001). Small regions of CFCsevere ≤0.5% predicted high risk (p < 0.0001 vs. no CFCsevere) related to a wave front of border zones at risk around the small most severe center. By receiver-operating characteristic analysis, relative stress topogram maps of stress (ml/min/g) as a fraction of LV defined these border zones at risk or for mildly reduced CFC (area under the curve [AUC]: 0.69) with a reduced relative tomographic subendocardial-to-subepicardial ratio. CFCsevere incurred the highest mortality risk that was reduced by revascularization (p = 0.005 vs. no revascularization) for artery-specific stenosis not defined by global CFR or stress perfusion alone. Conclusions: CFC is associated with the size-dependent highest mortality risk resulting from the additive risk of CFR and stress (ml/min/g) that is significantly reduced after revascularization, a finding not seen for global CFR. Small regions of CFCsevere ≤0.5% of LV also carry a high risk because of the surrounding border zones at risk defined by relative stress perfusion and a reduced relative subendocardial-to-subepicardial ratio.
AB - Objectives: This study sought to determine the relationship between the severity of reduced quantitative perfusion parameters and mortality with and without revascularization. Background: The physiological mechanisms for differential mortality risk of coronary flow reserve (CFR) and coronary flow capacity (CFC) before and after revascularization are unknown. Methods: Global and regional rest-stress (ml/min/g), CFR, their regional per-pixel combination as CFC, and relative stress in ml/min/g were measured as percent of LV in all serial routine 5,274 diagnostic PET scans with systematic follow-up over 10 years (mean 4.2 ± 2.5 years) for all-cause mortality with and without revascularization. Results: Severely reduced CFR of 1.0 to 1.5 and stress perfusion ≤1.0 cc/min/g incurred increasing size-dependent risks that were additive because regional severely reduced CFC (CFCsevere) was associated with the highest major adverse cardiac event rate of 80% (p < 0.0001 vs. either alone) and a mortality risk of 14% (vs. 2.3% for no CFCsevere; p = 0.001). Small regions of CFCsevere ≤0.5% predicted high risk (p < 0.0001 vs. no CFCsevere) related to a wave front of border zones at risk around the small most severe center. By receiver-operating characteristic analysis, relative stress topogram maps of stress (ml/min/g) as a fraction of LV defined these border zones at risk or for mildly reduced CFC (area under the curve [AUC]: 0.69) with a reduced relative tomographic subendocardial-to-subepicardial ratio. CFCsevere incurred the highest mortality risk that was reduced by revascularization (p = 0.005 vs. no revascularization) for artery-specific stenosis not defined by global CFR or stress perfusion alone. Conclusions: CFC is associated with the size-dependent highest mortality risk resulting from the additive risk of CFR and stress (ml/min/g) that is significantly reduced after revascularization, a finding not seen for global CFR. Small regions of CFCsevere ≤0.5% of LV also carry a high risk because of the surrounding border zones at risk defined by relative stress perfusion and a reduced relative subendocardial-to-subepicardial ratio.
KW - cardiac positron emission tomography
KW - clinical coronary physiology
KW - coronary flow capacity
KW - coronary flow reserve
KW - mortality and revascularization
KW - quantitative myocardial perfusion
UR - http://www.scopus.com/inward/record.url?scp=85097403452&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85097403452&partnerID=8YFLogxK
U2 - 10.1016/j.jcmg.2020.08.040
DO - 10.1016/j.jcmg.2020.08.040
M3 - Article
C2 - 33221205
AN - SCOPUS:85097403452
SN - 1936-878X
VL - 14
SP - 1020
EP - 1034
JO - JACC: Cardiovascular Imaging
JF - JACC: Cardiovascular Imaging
IS - 5
ER -