Multiple DNA glycosylases for repair of 8-oxoguanine and their potential in Vivo functions

Tapas Hazra, Jeff W. Hill, Tadahide Izumi, Sankar Mitra

Research output: Contribution to journalArticle

102 Citations (Scopus)

Abstract

8-Oxoguanine (8-oxoG) is a critical mutagenic lesion because of its propensity to mispair with A during DNA replication. All organisms, from bacteria to mammals, express at least two types of 8-oxoguanine-DNA glycosylase (OGG) for repair of 8-oxoG. The major enzyme class (OGGI), first identified in Escherichia coli as Mutts (Fpg), and later in yeast and humans, excises 8-oxoG when paired with C, T, and G but rarely with A. In contrast, a distinct and less abundant OGG, OGG2, prefers 8-oxoG when paired with G and A as a substrate, and has been characterized in yeast and human cells. Recently, OGG2 activity was detected in E. coli which was subsequently identified to be Nei (Endo VIII). In view of the ubiquity of OGG2, we have proposed a model named "bipartite antimutagenic processing of 8-oxoguanine" and is an extension of the original "GO model". The GO model explains the presence of OGGI (Mutts) that excises 8-oxoG from nonreplicated DNA. If 8-oxoG mispairs with A during replication, MutY excises A and provides an opportunity for insertion of C opposite 8-oxoG during subsequent repair replication. Our model postulates that whereas OGGI (Mutts) is responsible for global repair of 8-oxoG in the nonreplicating genome, OGG2 (Nei) repairs 8-oxoG in nascent or transcriptionaly active DNA. Interestingly, we observed that MutY and MutM reciprocally inhibited each other's catalytic activity but observed no mutual interference between Nei and MutY. This suggests that the recognition sites on the same substrate for Nei and MutY are nonoverlapping. Human OGG1 is distinct from other oxidized base-specific DNA glycosylases because of its extremely low turnover, weak AP lyase activity, and nonproductive affinity for the abasic (AP) site, its first reaction product. OGG1 is activated nearly 5-fold in the presence of AP-endonuclease (APE) as a result of its displacement by the latter. These results support the "handoff" mechanism of BER in which the enzymatic steps are coordinated as a result of displacement of the DNA glycosylase by APE, the next enzyme in the pathway. The physiological significance of multiple OGGs and their in vivo reaction mechanisms remain to be elucidated by further studies.

Original languageEnglish (US)
Pages (from-to)193-205
Number of pages13
JournalProgress in Nucleic Acid Research and Molecular Biology
Volume68
StatePublished - 2001

Fingerprint

DNA Glycosylases
DNA-(Apurinic or Apyrimidinic Site) Lyase
DNA Repair
Yeasts
Escherichia coli
DNA
Enzymes
DNA Replication
Mammals
Genome
Bacteria
8-hydroxyguanine

ASJC Scopus subject areas

  • Molecular Biology

Cite this

Multiple DNA glycosylases for repair of 8-oxoguanine and their potential in Vivo functions. / Hazra, Tapas; Hill, Jeff W.; Izumi, Tadahide; Mitra, Sankar.

In: Progress in Nucleic Acid Research and Molecular Biology, Vol. 68, 2001, p. 193-205.

Research output: Contribution to journalArticle

@article{e1dc80bd5ab149f2b20f251d9734936c,
title = "Multiple DNA glycosylases for repair of 8-oxoguanine and their potential in Vivo functions",
abstract = "8-Oxoguanine (8-oxoG) is a critical mutagenic lesion because of its propensity to mispair with A during DNA replication. All organisms, from bacteria to mammals, express at least two types of 8-oxoguanine-DNA glycosylase (OGG) for repair of 8-oxoG. The major enzyme class (OGGI), first identified in Escherichia coli as Mutts (Fpg), and later in yeast and humans, excises 8-oxoG when paired with C, T, and G but rarely with A. In contrast, a distinct and less abundant OGG, OGG2, prefers 8-oxoG when paired with G and A as a substrate, and has been characterized in yeast and human cells. Recently, OGG2 activity was detected in E. coli which was subsequently identified to be Nei (Endo VIII). In view of the ubiquity of OGG2, we have proposed a model named {"}bipartite antimutagenic processing of 8-oxoguanine{"} and is an extension of the original {"}GO model{"}. The GO model explains the presence of OGGI (Mutts) that excises 8-oxoG from nonreplicated DNA. If 8-oxoG mispairs with A during replication, MutY excises A and provides an opportunity for insertion of C opposite 8-oxoG during subsequent repair replication. Our model postulates that whereas OGGI (Mutts) is responsible for global repair of 8-oxoG in the nonreplicating genome, OGG2 (Nei) repairs 8-oxoG in nascent or transcriptionaly active DNA. Interestingly, we observed that MutY and MutM reciprocally inhibited each other's catalytic activity but observed no mutual interference between Nei and MutY. This suggests that the recognition sites on the same substrate for Nei and MutY are nonoverlapping. Human OGG1 is distinct from other oxidized base-specific DNA glycosylases because of its extremely low turnover, weak AP lyase activity, and nonproductive affinity for the abasic (AP) site, its first reaction product. OGG1 is activated nearly 5-fold in the presence of AP-endonuclease (APE) as a result of its displacement by the latter. These results support the {"}handoff{"} mechanism of BER in which the enzymatic steps are coordinated as a result of displacement of the DNA glycosylase by APE, the next enzyme in the pathway. The physiological significance of multiple OGGs and their in vivo reaction mechanisms remain to be elucidated by further studies.",
author = "Tapas Hazra and Hill, {Jeff W.} and Tadahide Izumi and Sankar Mitra",
year = "2001",
language = "English (US)",
volume = "68",
pages = "193--205",
journal = "Progress in Molecular Biology and Translational Science",
issn = "1877-1173",
publisher = "Academic Press Inc.",

}

TY - JOUR

T1 - Multiple DNA glycosylases for repair of 8-oxoguanine and their potential in Vivo functions

AU - Hazra, Tapas

AU - Hill, Jeff W.

AU - Izumi, Tadahide

AU - Mitra, Sankar

PY - 2001

Y1 - 2001

N2 - 8-Oxoguanine (8-oxoG) is a critical mutagenic lesion because of its propensity to mispair with A during DNA replication. All organisms, from bacteria to mammals, express at least two types of 8-oxoguanine-DNA glycosylase (OGG) for repair of 8-oxoG. The major enzyme class (OGGI), first identified in Escherichia coli as Mutts (Fpg), and later in yeast and humans, excises 8-oxoG when paired with C, T, and G but rarely with A. In contrast, a distinct and less abundant OGG, OGG2, prefers 8-oxoG when paired with G and A as a substrate, and has been characterized in yeast and human cells. Recently, OGG2 activity was detected in E. coli which was subsequently identified to be Nei (Endo VIII). In view of the ubiquity of OGG2, we have proposed a model named "bipartite antimutagenic processing of 8-oxoguanine" and is an extension of the original "GO model". The GO model explains the presence of OGGI (Mutts) that excises 8-oxoG from nonreplicated DNA. If 8-oxoG mispairs with A during replication, MutY excises A and provides an opportunity for insertion of C opposite 8-oxoG during subsequent repair replication. Our model postulates that whereas OGGI (Mutts) is responsible for global repair of 8-oxoG in the nonreplicating genome, OGG2 (Nei) repairs 8-oxoG in nascent or transcriptionaly active DNA. Interestingly, we observed that MutY and MutM reciprocally inhibited each other's catalytic activity but observed no mutual interference between Nei and MutY. This suggests that the recognition sites on the same substrate for Nei and MutY are nonoverlapping. Human OGG1 is distinct from other oxidized base-specific DNA glycosylases because of its extremely low turnover, weak AP lyase activity, and nonproductive affinity for the abasic (AP) site, its first reaction product. OGG1 is activated nearly 5-fold in the presence of AP-endonuclease (APE) as a result of its displacement by the latter. These results support the "handoff" mechanism of BER in which the enzymatic steps are coordinated as a result of displacement of the DNA glycosylase by APE, the next enzyme in the pathway. The physiological significance of multiple OGGs and their in vivo reaction mechanisms remain to be elucidated by further studies.

AB - 8-Oxoguanine (8-oxoG) is a critical mutagenic lesion because of its propensity to mispair with A during DNA replication. All organisms, from bacteria to mammals, express at least two types of 8-oxoguanine-DNA glycosylase (OGG) for repair of 8-oxoG. The major enzyme class (OGGI), first identified in Escherichia coli as Mutts (Fpg), and later in yeast and humans, excises 8-oxoG when paired with C, T, and G but rarely with A. In contrast, a distinct and less abundant OGG, OGG2, prefers 8-oxoG when paired with G and A as a substrate, and has been characterized in yeast and human cells. Recently, OGG2 activity was detected in E. coli which was subsequently identified to be Nei (Endo VIII). In view of the ubiquity of OGG2, we have proposed a model named "bipartite antimutagenic processing of 8-oxoguanine" and is an extension of the original "GO model". The GO model explains the presence of OGGI (Mutts) that excises 8-oxoG from nonreplicated DNA. If 8-oxoG mispairs with A during replication, MutY excises A and provides an opportunity for insertion of C opposite 8-oxoG during subsequent repair replication. Our model postulates that whereas OGGI (Mutts) is responsible for global repair of 8-oxoG in the nonreplicating genome, OGG2 (Nei) repairs 8-oxoG in nascent or transcriptionaly active DNA. Interestingly, we observed that MutY and MutM reciprocally inhibited each other's catalytic activity but observed no mutual interference between Nei and MutY. This suggests that the recognition sites on the same substrate for Nei and MutY are nonoverlapping. Human OGG1 is distinct from other oxidized base-specific DNA glycosylases because of its extremely low turnover, weak AP lyase activity, and nonproductive affinity for the abasic (AP) site, its first reaction product. OGG1 is activated nearly 5-fold in the presence of AP-endonuclease (APE) as a result of its displacement by the latter. These results support the "handoff" mechanism of BER in which the enzymatic steps are coordinated as a result of displacement of the DNA glycosylase by APE, the next enzyme in the pathway. The physiological significance of multiple OGGs and their in vivo reaction mechanisms remain to be elucidated by further studies.

UR - http://www.scopus.com/inward/record.url?scp=0035225869&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035225869&partnerID=8YFLogxK

M3 - Article

C2 - 11554297

AN - SCOPUS:0035225869

VL - 68

SP - 193

EP - 205

JO - Progress in Molecular Biology and Translational Science

JF - Progress in Molecular Biology and Translational Science

SN - 1877-1173

ER -