TY - JOUR
T1 - Myocyte contracture, vascular resistance, and vascular permeability after global ischemia in isolated hearts from alloxan-induced diabetic rabbits
AU - Tilton, R. G.
AU - Daugherty, A.
AU - Sutera, S. P.
AU - Larson, K. B.
AU - Land, M. P.
AU - Rateri, D. L.
AU - Kilo, C.
AU - Williamson, J. R.
N1 - Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.
PY - 1989
Y1 - 1989
N2 - Coronary vascular hemodynamics, albumin permeation, and myocyte contractility were assessed in isolated hearts from 6-mo alloxan-induced diabetic (ALX-D) rabbits during 3 h of reperfusion after 40 min of global no-flow ischemia. Residue-detection data, generated during the single passage of a bolus of 125I-labeled bovine serum albumin (125I-BSA) through the coronary vasculature, were used to estimate indices of vascular function, including the mean transit time of 125I-BSA, the fractional rate of intravascular clearance of 125I-BSA, and 125I-BSA permeation of coronary vessels. During reflow after ischemia in hearts from control rabbits, vascular resistance increased approximately three times that at baseline, left ventricular end-diastolic pressure (LVEDP) increased 8-10 times, and maximum +dP/dt recovered 0.4 times baseline, whereas the fractional rate of washout of intravascular 125I-BSA decreased to less than one-half of baseline values (was prolonged 2-fold), and albumin permeation and mean-transit time were increased 3 and 5 times baseline, respectively. In hearts from diabetic rabbits, vascular resistance was similar to the control group before ischemia but increased only one-third as much during reflow after ischemia. Increases in LVEDP during reflow were ~50% lower than controls, and +dP/dt recovered ~2.5 times more than in control hearts. 125I-BSA permeation in diabetics was similar to controls before ischemia, but during reflow increased 6 times (~2 times controls). Washout of intravascular 125I-BSA was prolonged ~20% versus baseline during 3 h of reflow in hearts from diabetic rabbits. Thus, ALX-D in the rabbit delayed ischemia-reperfusion injury to myocytes and vascular smooth muscle cells while increasing vascular albumin permeation.
AB - Coronary vascular hemodynamics, albumin permeation, and myocyte contractility were assessed in isolated hearts from 6-mo alloxan-induced diabetic (ALX-D) rabbits during 3 h of reperfusion after 40 min of global no-flow ischemia. Residue-detection data, generated during the single passage of a bolus of 125I-labeled bovine serum albumin (125I-BSA) through the coronary vasculature, were used to estimate indices of vascular function, including the mean transit time of 125I-BSA, the fractional rate of intravascular clearance of 125I-BSA, and 125I-BSA permeation of coronary vessels. During reflow after ischemia in hearts from control rabbits, vascular resistance increased approximately three times that at baseline, left ventricular end-diastolic pressure (LVEDP) increased 8-10 times, and maximum +dP/dt recovered 0.4 times baseline, whereas the fractional rate of washout of intravascular 125I-BSA decreased to less than one-half of baseline values (was prolonged 2-fold), and albumin permeation and mean-transit time were increased 3 and 5 times baseline, respectively. In hearts from diabetic rabbits, vascular resistance was similar to the control group before ischemia but increased only one-third as much during reflow after ischemia. Increases in LVEDP during reflow were ~50% lower than controls, and +dP/dt recovered ~2.5 times more than in control hearts. 125I-BSA permeation in diabetics was similar to controls before ischemia, but during reflow increased 6 times (~2 times controls). Washout of intravascular 125I-BSA was prolonged ~20% versus baseline during 3 h of reflow in hearts from diabetic rabbits. Thus, ALX-D in the rabbit delayed ischemia-reperfusion injury to myocytes and vascular smooth muscle cells while increasing vascular albumin permeation.
UR - http://www.scopus.com/inward/record.url?scp=0024463232&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0024463232&partnerID=8YFLogxK
U2 - 10.2337/diab.38.11.1484
DO - 10.2337/diab.38.11.1484
M3 - Article
C2 - 2620782
AN - SCOPUS:0024463232
SN - 0012-1797
VL - 38
SP - 1484
EP - 1491
JO - Diabetes
JF - Diabetes
IS - 11
ER -