TY - JOUR
T1 - Nasopharyngeal microbiota in infants and changes during viral upper respiratory tract infection and acute otitis media
AU - Chonmaitree, Tasnee
AU - Jennings, Kristofer
AU - Golovko, Georgiy
AU - Khanipov, Kamil
AU - Pimenova, Maria
AU - Patel, Janak
AU - McCormick, David
AU - Loeffelholz, Michael
AU - Fofanov, Yuriy
N1 - Publisher Copyright:
© 2017 Chonmaitree et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2017/7
Y1 - 2017/7
N2 - Background Interferences between pathogenic bacteria and specific commensals are known. We determined the interactions between nasopharyngeal microbial pathogens and commensals during viral upper respiratory tract infection (URI) and acute otitis media (AOM) in infants. Methods We analyzed 971 specimens collected monthly and during URI and AOM episodes from 139 infants. The 16S rRNA V4 gene regions were sequenced on the Illumina MiSeq platform. Results Among the high abundant genus-level nasopharyngeal microbiota were Moraxella, Haemophilus, and Streptococcus (3 otopathogen genera), Corynebacterium, Dolosigranulum, Staphylococcus, Acinetobacter, Pseudomonas, and Bifidobacterium. Bacterial diversity was lower in culture-positive samples for Streptococcus pneumoniae, and Haemophilus influenzae, compared to cultured-negative samples. URI frequencies were positively associated with increasing trend in otopathogen colonization. AOM frequencies were associated with decreasing trend in Micrococcus colonization. During URI and AOM, there were increases in abundance of otopathogen genera and decreases in Pseudomonas, Myroides, Yersinia, and Sphingomonas. Otopathogen abundance was increased during symptomatic viral infection, but not during asymptomatic infection. The risk for AOM complicating URI was reduced by increased abundance of Staphylococcus and Sphingobium. Conclusion Otopathogen genera played the key roles in URI and AOM occurrences. Staphylococcus counteracts otopathogens thus Staphylococcal colonization may be beneficial, rather than harmful. While Sphingobium may play a role in preventing AOM complicating URI, the commonly used probiotic Bifidobacterium did not play a significant role during URI or AOM. The role of less common commensals in counteracting the deleterious effects of otopathogens requires further studies.
AB - Background Interferences between pathogenic bacteria and specific commensals are known. We determined the interactions between nasopharyngeal microbial pathogens and commensals during viral upper respiratory tract infection (URI) and acute otitis media (AOM) in infants. Methods We analyzed 971 specimens collected monthly and during URI and AOM episodes from 139 infants. The 16S rRNA V4 gene regions were sequenced on the Illumina MiSeq platform. Results Among the high abundant genus-level nasopharyngeal microbiota were Moraxella, Haemophilus, and Streptococcus (3 otopathogen genera), Corynebacterium, Dolosigranulum, Staphylococcus, Acinetobacter, Pseudomonas, and Bifidobacterium. Bacterial diversity was lower in culture-positive samples for Streptococcus pneumoniae, and Haemophilus influenzae, compared to cultured-negative samples. URI frequencies were positively associated with increasing trend in otopathogen colonization. AOM frequencies were associated with decreasing trend in Micrococcus colonization. During URI and AOM, there were increases in abundance of otopathogen genera and decreases in Pseudomonas, Myroides, Yersinia, and Sphingomonas. Otopathogen abundance was increased during symptomatic viral infection, but not during asymptomatic infection. The risk for AOM complicating URI was reduced by increased abundance of Staphylococcus and Sphingobium. Conclusion Otopathogen genera played the key roles in URI and AOM occurrences. Staphylococcus counteracts otopathogens thus Staphylococcal colonization may be beneficial, rather than harmful. While Sphingobium may play a role in preventing AOM complicating URI, the commonly used probiotic Bifidobacterium did not play a significant role during URI or AOM. The role of less common commensals in counteracting the deleterious effects of otopathogens requires further studies.
UR - http://www.scopus.com/inward/record.url?scp=85023743577&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85023743577&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0180630
DO - 10.1371/journal.pone.0180630
M3 - Article
C2 - 28708872
AN - SCOPUS:85023743577
SN - 1932-6203
VL - 12
JO - PloS one
JF - PloS one
IS - 7
M1 - e0180630
ER -