Neurological sequelae resulting from encephalitic alphavirus infection

Shannon E. Ronca, Kelly Dineley, Slobodan Paessler

Research output: Contribution to journalReview article

16 Citations (Scopus)

Abstract

The recent surge in viral clinical cases and associated neurological deficits have reminded us that viral infections can lead to detrimental, long-term effects, termed sequelae, in survivors. Alphaviruses are enveloped, single-stranded positive-sense RNA viruses in the Togaviridae family. Transmission of alphaviruses between and within species occurs mainly via the bite of an infected mosquito bite, giving alphaviruses a place among arboviruses, or arthropod-borne viruses. Alphaviruses are found throughout the world and typically cause arthralgic or encephalitic disease in infected humans. Originally detected in the 1930s, today the major encephalitic viruses include Venezuelan, Western, and Eastern equine encephalitis viruses (VEEV, WEEV, and EEEV, respectively). VEEV, WEEV, and EEEV are endemic to the Americas and are important human pathogens, leading to thousands of human infections each year. Despite awareness of these viruses for nearly 100 years, we possess little mechanistic understanding regarding the complications (sequelae) that emerge after resolution of acute infection. Neurological sequelae are those complications involving damage to the central nervous system that results in cognitive, sensory, or motor deficits that may also manifest as emotional instability and seizures in the most severe cases. This article serves to provide an overview of clinical cases documented in the past century as well as a summary of the reported neurological sequelae due to VEEV, WEEV, and EEEV infection. We conclude with a treatise on the utility of, and practical considerations for animal models applied to the problem of neurological sequelae of viral encephalopathies in order to decipher mechanisms and interventional strategies.

Original languageEnglish (US)
Article number959
JournalFrontiers in Microbiology
Volume7
Issue numberJUN
DOIs
StatePublished - 2016

Fingerprint

Alphavirus Infections
Alphavirus
Arboviruses
Bites and Stings
Western Equine Encephalitis Viruses
Eastern equine encephalitis virus
Togaviridae
Infection
Venezuelan Equine Encephalitis Viruses
Viruses
RNA Viruses
Brain Diseases
Virus Diseases
Culicidae
Seizures
Central Nervous System
Animal Models

Keywords

  • Alphavirus
  • Behavior
  • Sequelae
  • VEEV
  • VEEV
  • WEEV

ASJC Scopus subject areas

  • Microbiology
  • Microbiology (medical)

Cite this

Neurological sequelae resulting from encephalitic alphavirus infection. / Ronca, Shannon E.; Dineley, Kelly; Paessler, Slobodan.

In: Frontiers in Microbiology, Vol. 7, No. JUN, 959, 2016.

Research output: Contribution to journalReview article

@article{5e08856b60d346838d55f52c8c3850db,
title = "Neurological sequelae resulting from encephalitic alphavirus infection",
abstract = "The recent surge in viral clinical cases and associated neurological deficits have reminded us that viral infections can lead to detrimental, long-term effects, termed sequelae, in survivors. Alphaviruses are enveloped, single-stranded positive-sense RNA viruses in the Togaviridae family. Transmission of alphaviruses between and within species occurs mainly via the bite of an infected mosquito bite, giving alphaviruses a place among arboviruses, or arthropod-borne viruses. Alphaviruses are found throughout the world and typically cause arthralgic or encephalitic disease in infected humans. Originally detected in the 1930s, today the major encephalitic viruses include Venezuelan, Western, and Eastern equine encephalitis viruses (VEEV, WEEV, and EEEV, respectively). VEEV, WEEV, and EEEV are endemic to the Americas and are important human pathogens, leading to thousands of human infections each year. Despite awareness of these viruses for nearly 100 years, we possess little mechanistic understanding regarding the complications (sequelae) that emerge after resolution of acute infection. Neurological sequelae are those complications involving damage to the central nervous system that results in cognitive, sensory, or motor deficits that may also manifest as emotional instability and seizures in the most severe cases. This article serves to provide an overview of clinical cases documented in the past century as well as a summary of the reported neurological sequelae due to VEEV, WEEV, and EEEV infection. We conclude with a treatise on the utility of, and practical considerations for animal models applied to the problem of neurological sequelae of viral encephalopathies in order to decipher mechanisms and interventional strategies.",
keywords = "Alphavirus, Behavior, Sequelae, VEEV, VEEV, WEEV",
author = "Ronca, {Shannon E.} and Kelly Dineley and Slobodan Paessler",
year = "2016",
doi = "10.3389/fmicb.2016.00959",
language = "English (US)",
volume = "7",
journal = "Frontiers in Microbiology",
issn = "1664-302X",
publisher = "Frontiers Media S. A.",
number = "JUN",

}

TY - JOUR

T1 - Neurological sequelae resulting from encephalitic alphavirus infection

AU - Ronca, Shannon E.

AU - Dineley, Kelly

AU - Paessler, Slobodan

PY - 2016

Y1 - 2016

N2 - The recent surge in viral clinical cases and associated neurological deficits have reminded us that viral infections can lead to detrimental, long-term effects, termed sequelae, in survivors. Alphaviruses are enveloped, single-stranded positive-sense RNA viruses in the Togaviridae family. Transmission of alphaviruses between and within species occurs mainly via the bite of an infected mosquito bite, giving alphaviruses a place among arboviruses, or arthropod-borne viruses. Alphaviruses are found throughout the world and typically cause arthralgic or encephalitic disease in infected humans. Originally detected in the 1930s, today the major encephalitic viruses include Venezuelan, Western, and Eastern equine encephalitis viruses (VEEV, WEEV, and EEEV, respectively). VEEV, WEEV, and EEEV are endemic to the Americas and are important human pathogens, leading to thousands of human infections each year. Despite awareness of these viruses for nearly 100 years, we possess little mechanistic understanding regarding the complications (sequelae) that emerge after resolution of acute infection. Neurological sequelae are those complications involving damage to the central nervous system that results in cognitive, sensory, or motor deficits that may also manifest as emotional instability and seizures in the most severe cases. This article serves to provide an overview of clinical cases documented in the past century as well as a summary of the reported neurological sequelae due to VEEV, WEEV, and EEEV infection. We conclude with a treatise on the utility of, and practical considerations for animal models applied to the problem of neurological sequelae of viral encephalopathies in order to decipher mechanisms and interventional strategies.

AB - The recent surge in viral clinical cases and associated neurological deficits have reminded us that viral infections can lead to detrimental, long-term effects, termed sequelae, in survivors. Alphaviruses are enveloped, single-stranded positive-sense RNA viruses in the Togaviridae family. Transmission of alphaviruses between and within species occurs mainly via the bite of an infected mosquito bite, giving alphaviruses a place among arboviruses, or arthropod-borne viruses. Alphaviruses are found throughout the world and typically cause arthralgic or encephalitic disease in infected humans. Originally detected in the 1930s, today the major encephalitic viruses include Venezuelan, Western, and Eastern equine encephalitis viruses (VEEV, WEEV, and EEEV, respectively). VEEV, WEEV, and EEEV are endemic to the Americas and are important human pathogens, leading to thousands of human infections each year. Despite awareness of these viruses for nearly 100 years, we possess little mechanistic understanding regarding the complications (sequelae) that emerge after resolution of acute infection. Neurological sequelae are those complications involving damage to the central nervous system that results in cognitive, sensory, or motor deficits that may also manifest as emotional instability and seizures in the most severe cases. This article serves to provide an overview of clinical cases documented in the past century as well as a summary of the reported neurological sequelae due to VEEV, WEEV, and EEEV infection. We conclude with a treatise on the utility of, and practical considerations for animal models applied to the problem of neurological sequelae of viral encephalopathies in order to decipher mechanisms and interventional strategies.

KW - Alphavirus

KW - Behavior

KW - Sequelae

KW - VEEV

KW - VEEV

KW - WEEV

UR - http://www.scopus.com/inward/record.url?scp=84979995601&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84979995601&partnerID=8YFLogxK

U2 - 10.3389/fmicb.2016.00959

DO - 10.3389/fmicb.2016.00959

M3 - Review article

VL - 7

JO - Frontiers in Microbiology

JF - Frontiers in Microbiology

SN - 1664-302X

IS - JUN

M1 - 959

ER -