TY - JOUR
T1 - Neuroprotective effects of HSF1 in retinal ischemia-reperfusion injury
AU - Liu, Wei
AU - Xia, Fan
AU - Ha, Yonju
AU - Zhu, Shuang
AU - Li, Yi
AU - Folorunso, Oluwarotimi
AU - Pashaei-Marandi, Aryan
AU - Lin, Pei Yi
AU - Tilton, Ronald G.
AU - Pierce, Anson P.
AU - Liu, Hua
AU - Zhang, Wenbo
N1 - Publisher Copyright:
© 2019 The Authors.
PY - 2019/3
Y1 - 2019/3
N2 - PURPOSE. Retinal ischemia, a common cause of several vision-threatening diseases, contributes to the death of retinal neurons, particularly retinal ganglion cells (RGCs). Heat shock transcription factor 1 (HSF1), a stress-responsive protein, has been shown to be important in response to cellular stress stimuli, including ischemia. This study is to investigate whether HSF1 has a role in retinal neuronal injury in a mouse model of retinal ischemia-reperfusion (IR). METHODS. IR was induced by inserting an infusion needle into the anterior chamber of the right eye and elevating a saline reservoir connected to the needle to raise the intraocular pressure to 110 mm Hg for 45 minutes. HSF1, Hsp70, molecules in the endoplasmic reticulum (ER) stress branches, tau phosphorylation, inflammatory molecules, and RGC injury were determined by immunohistochemistry, Western blot, or quantitative PCR. RESULTS. HSF1 expression was significantly increased in the retina 6 hours after IR. Using our novel transgenic mice carrying full-length human HSF gene, we demonstrated that IR-induced retinal neuronal apoptosis and necroptosis were abrogated 12 hours after IR. RGCs and their function were preserved in the HSF1 transgenic mice 7 days after IR. Mechanistically, the beneficial effects of HSF1 may be mediated by its induction of chaperone protein Hsp70 and alleviation of ER stress, leading to decreased tau phosphorylation and attenuated inflammatory response 12 to 24 hours after IR. CONCLUSIONS. These data provide compelling evidence that HSF1 is neuroprotective against retinal IR injury, and boosting HSF1 expression may be a beneficial strategy to limit neuronal degeneration in retinal diseases.
AB - PURPOSE. Retinal ischemia, a common cause of several vision-threatening diseases, contributes to the death of retinal neurons, particularly retinal ganglion cells (RGCs). Heat shock transcription factor 1 (HSF1), a stress-responsive protein, has been shown to be important in response to cellular stress stimuli, including ischemia. This study is to investigate whether HSF1 has a role in retinal neuronal injury in a mouse model of retinal ischemia-reperfusion (IR). METHODS. IR was induced by inserting an infusion needle into the anterior chamber of the right eye and elevating a saline reservoir connected to the needle to raise the intraocular pressure to 110 mm Hg for 45 minutes. HSF1, Hsp70, molecules in the endoplasmic reticulum (ER) stress branches, tau phosphorylation, inflammatory molecules, and RGC injury were determined by immunohistochemistry, Western blot, or quantitative PCR. RESULTS. HSF1 expression was significantly increased in the retina 6 hours after IR. Using our novel transgenic mice carrying full-length human HSF gene, we demonstrated that IR-induced retinal neuronal apoptosis and necroptosis were abrogated 12 hours after IR. RGCs and their function were preserved in the HSF1 transgenic mice 7 days after IR. Mechanistically, the beneficial effects of HSF1 may be mediated by its induction of chaperone protein Hsp70 and alleviation of ER stress, leading to decreased tau phosphorylation and attenuated inflammatory response 12 to 24 hours after IR. CONCLUSIONS. These data provide compelling evidence that HSF1 is neuroprotective against retinal IR injury, and boosting HSF1 expression may be a beneficial strategy to limit neuronal degeneration in retinal diseases.
KW - ER stress
KW - HSF1
KW - Heat shock protein
KW - Neuronal injury
KW - Retinal ischemia
UR - http://www.scopus.com/inward/record.url?scp=85063304031&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85063304031&partnerID=8YFLogxK
U2 - 10.1167/iovs.18-26216
DO - 10.1167/iovs.18-26216
M3 - Article
C2 - 30884523
AN - SCOPUS:85063304031
SN - 0146-0404
VL - 60
SP - 965
EP - 977
JO - Investigative Ophthalmology and Visual Science
JF - Investigative Ophthalmology and Visual Science
IS - 4
ER -