Novel role of Vpmas as major adhesins of Mycoplasma agalactiae mediating differential cell adhesion and invasion of Vpma expression variants

Shrilakshmi Hegde, Martina Zimmermann, Renate Rosengarten, Rohini Chopra-Dewasthaly

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

Mycoplasma agalactiae exhibits antigenic variation by switching the expression of multiple surface lipoproteins called Vpmas. Although implicated to have a significant influence on the pathogenicity, their exact role in pathogen-host interactions has not been investigated so far. Initial attachment to host cells is regarded as one of the most important steps for colonization but this pathogen lacks the typical mycoplasma attachment organelle. The aim of this study was to determine the role of Vpmas in adhesion of M. agalactiae to host cells. ‘Phase-Locked’ Mutants (PLMs) steadily expressing single well-characterized Vpma lipoproteins served as ideal tools to evaluate the role of each of the six Vpmas in cytadhesion, which was otherwise not possible due to the high-frequency switching of Vpmas in the wildtype strain PG2. Using in vitro adhesion assays with HeLa and sheep mammary epithelial (MECs) and stromal (MSCs) cells, we could demonstrate differences in the adhesion capabilities of each of the six PLMs compared to the wildtype strain. The PLMV mutant expressing VpmaV exhibited the highest adhesion rate, whereas PLMU, which expresses VpmaU showed the lowest adhesion values explaining the reduced in vivo fitness of PLMU in sheep during experimental intramammary and conjunctival infections. Furthermore, adhesion inhibition assays using Vpma-specific polyclonal antisera were performed to confirm the role of Vpmas in M. agalactiae cytadhesion. This led to a significant decrease (p < 0.05) in the adhesion percentage of each PLM. Immunofluorescence staining of TX-114 phase proteins extracted from each PLM showed binding of the respective Vpma to HeLa cells and MECs proving the direct role of Vpmas in cytadhesion. Furthermore, as adhesion is a prerequisite for cell invasion, the ability of the six PLMs to invade HeLa cells was also evaluated using the gentamicin protection assay. The results showed a strong correlation between the adhesion rates and invasion frequencies of the individual PLMs. This is the first report that describes a novel function of Vpma proteins in cell adhesion and invasion. Besides the variability of these proteins causing surface antigenic variation, the newly identified phenotypes are likely to play critical roles in the pathogenicity potential of this ruminant pathogen.

Original languageEnglish (US)
Pages (from-to)263-270
Number of pages8
JournalInternational Journal of Medical Microbiology
Volume308
Issue number2
DOIs
StatePublished - Mar 2018
Externally publishedYes

Keywords

  • Cell invasion
  • Cytadherence
  • Differential pathogenicity
  • Mycoplasma agalactiae
  • Phase-Locked mutants
  • Sheep infection
  • Vpma phase variation

ASJC Scopus subject areas

  • Microbiology
  • Microbiology (medical)
  • Infectious Diseases

Fingerprint

Dive into the research topics of 'Novel role of Vpmas as major adhesins of Mycoplasma agalactiae mediating differential cell adhesion and invasion of Vpma expression variants'. Together they form a unique fingerprint.

Cite this