Abstract
This study is concerned with numerical parameters of axonal regeneration in peripheral nerves. Our first finding is that the number of axons that regenerate into the distal stump of a somatic nerve at a particular time after transection is partially dependent on the type of lesion used to interrupt the axons. The second question concerns the proportion of axons that regenerate into the distal stump of a parent nerve compared to the proportions that regenerate into tributary nerves that arise from the parent. The proportions of regenerated myelinated axons in the nerve to the medial gastrocnemius muscle and myelinated and unmyelinated axons in the sural nerve are the same as the proportions of myelinated and unmyelinated axons that regenerate into the distal stump of the sciatic nerve for the crush, 0 and 4 mm gap transections. Proportionally fewer axons regenerate into the tributary nerves following the 8 mm gap transection, however. This implies that the length of the gap has an influence on whether or not axons in tributary nerves regenerate in concert with axons in the distal stump of the parent nerve. The unmyelinated fibers in the nerve to the medial gastrocnemius muscle are different because they do not regenerate in proportion to those in the distal stump of the sciatic nerve. We also provide evidence to indicate that myelinated axons branch whereas unmyelinated fibers end blindly when they enter the distal stump after crossing a sciatic nerve transection. Finally the normal arrangement of perineurial cells seems to be disrupted after the sciatic nerve regenerates across a gap.
Original language | English (US) |
---|---|
Pages (from-to) | 27-40 |
Number of pages | 14 |
Journal | Brain Research |
Volume | 326 |
Issue number | 1 |
DOIs | |
State | Published - Feb 4 1985 |
Keywords
- peripheral nerve
- regeneration
ASJC Scopus subject areas
- General Neuroscience
- Molecular Biology
- Clinical Neurology
- Developmental Biology