Abstract
Background: Lack of efficient drug and gene delivery is one of the major problems of cancer chemo- and bio-therapy. This work is focused on optimization of ultrasound-induced delivery of model macromolecular anti-cancer drugs and DNA in human cancer cells. Materials and Methods: FITC dextrans simulated antisense oligonucleotides (10 kDa), antibodies (70 kDa), and genes (2000 kDa). Optimization of ultrasound frequency, intensity, duty cycle, time of irradiation, and concentration of Optison (ultrasound contrast agent) was performed. Results: Optimal parameters provided in the MCF7 cell line 73.5±3.3%, 72.7±0.9%, and 62.7±2.1% delivery of 10-kDa, 70-kDa, and 2000-kDa macromolecules, respectively, 36.7±4.9% of cell transfection, while dead cell count was only 13.5±1.6%. Statistically significant drug delivery and transfection was obtained in all tested cell lines. Conclusion: These results suggest that optimized treatment parameters provide efficient drug and gene delivery in cancer cells and could be used for further in vivo and in vitro experiments.
Original language | English (US) |
---|---|
Pages (from-to) | 149-156 |
Number of pages | 8 |
Journal | Anticancer Research |
Volume | 25 |
Issue number | 1 A |
State | Published - Jan 2005 |
Keywords
- Biotherapy
- Cavitation
- Drug delivery
- Gene therapy
- Transfection
- Ultrasound
ASJC Scopus subject areas
- Oncology
- Cancer Research