Optoacoustic monitoring of freezing and hypothermia of tissue and tissue phantoms

Irina Larina, Kirill Larin, Massoud Motamedi, Rinat Esenaliev

Research output: Chapter in Book/Report/Conference proceedingChapter

7 Scopus citations

Abstract

Monitoring of tissue freezing and hypothermia during cryotherapy in real time is in the great demand for precise selective destruction of tumors. Ultrasound imaging, magnetic resonance imaging, and computer tomography techniques proposed for cryotherapy monitoring have problems associated with long acquisition time, high cost, low contrast, and poor resolution. In this paper we propose to use optoacoustic technique for monitoring of tissue freezing and hypothermia. Optoacoustic imaging is based on time-resolved detection of laser-induced acoustic waves. We studied influence of cooling and freezing on amplitude and profile of laser induced optoacoustic signals recorded from tissue phantoms (aqueous solution of potassium chromate) and canine liver. We used liquid nitrogen as a coolant of our samples. Q-switched Nd:YAG laser pulses were used to induce optoacoustic pulses. Our studies demonstrated that (1) amplitude of optoacoustic signals recorded from native tissues and aqueous solutions decreases with cooling down to the temperatures of -2 °C and 0 °C, respectively; and (2) freezing of tissues and aqueous solutions results in dramatic change in the optoacoustic signal profiles and amplitude. Our results indicate that the laser optoacoustic technique can potentially be used for real-time monitoring of freezing front in tissue with 0.5-mm spatial resolution.

Original languageEnglish (US)
Title of host publicationProceedings of SPIE - The International Society for Optical Engineering
PublisherSociety of Photo-Optical Instrumentation Engineers
Pages361-367
Number of pages7
Volume4001
StatePublished - 2000
EventSaratov Fall Meeting '99: Optical Technologies in Biophysics and Medicine - Saratov, Russia
Duration: Oct 5 1999Oct 8 1999

Other

OtherSaratov Fall Meeting '99: Optical Technologies in Biophysics and Medicine
CitySaratov, Russia
Period10/5/9910/8/99

    Fingerprint

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Condensed Matter Physics

Cite this

Larina, I., Larin, K., Motamedi, M., & Esenaliev, R. (2000). Optoacoustic monitoring of freezing and hypothermia of tissue and tissue phantoms. In Proceedings of SPIE - The International Society for Optical Engineering (Vol. 4001, pp. 361-367). Society of Photo-Optical Instrumentation Engineers.