TY - GEN
T1 - Optoacoustic theranostics
AU - Petrov, Irene Y.
AU - Micci, Maria Adelaide
AU - Prough, Donald S.
AU - Petrov, Yuriy
AU - Guptarak, Jutatip
AU - Grant, Auston C.
AU - Parsley, Margaret A.
AU - Bolding, Ian J.
AU - Esenaliev, Rinat O.
N1 - Publisher Copyright:
© COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.
PY - 2018
Y1 - 2018
N2 - Optoacoustic diagnostics is based on detection and analysis of optoacoustic waves induced in tissues. It may find a number of important clinical applications in large populations of patients such as diagnostics of cerebral hypoxia, circulatory shock, etc. Recently, we proposed Nano-Pulse Laser Therapy (NPLT) which utilizes short optical pulses (typically, shorter than hundreds of nanoseconds) to generate optoacoustic waves in tissues upon stress-confined irradiation. It is well known that continuous wave low-level near-infrared light can be used for therapy/photobiomodulation to stimulate, repair, regenerate, and protect injured tissue. In the past few years, new works emerged on therapeutic effects of low-intensity ultrasound waves. The NPLT consists of irradiating tissue by both lowlevel light and optoacoustic waves/ultrasound that combines merits of low-level light and ultrasound therapies. In this work we propose optoacoustic theranostics that can be used for diagnostics, optoacoustic therapy/NPLT, and monitoring of therapeutic response during and after therapy. We developed and built pulsed, tunable, near infrared (680-1064 nm), fiber-coupled systems for optoacoustic theranostics and tested them in rats with traumatic brain injury (TBI). Low energy pulses were used for optoacoustic monitoring of cerebral blood oxygenation, while higher energy pulses were used for the NPLT. Our studies show that TBI results in cerebral hypoxia, while a 5-minute transcranial application of NPLT significantly reduces negative effects of TBI as assessed by vestibulomotor, cognitive, and immunofluorescence tests. The obtained results suggest that the optoacoustic theranostics may be used for diagnostics and management of TBI and other disorders.
AB - Optoacoustic diagnostics is based on detection and analysis of optoacoustic waves induced in tissues. It may find a number of important clinical applications in large populations of patients such as diagnostics of cerebral hypoxia, circulatory shock, etc. Recently, we proposed Nano-Pulse Laser Therapy (NPLT) which utilizes short optical pulses (typically, shorter than hundreds of nanoseconds) to generate optoacoustic waves in tissues upon stress-confined irradiation. It is well known that continuous wave low-level near-infrared light can be used for therapy/photobiomodulation to stimulate, repair, regenerate, and protect injured tissue. In the past few years, new works emerged on therapeutic effects of low-intensity ultrasound waves. The NPLT consists of irradiating tissue by both lowlevel light and optoacoustic waves/ultrasound that combines merits of low-level light and ultrasound therapies. In this work we propose optoacoustic theranostics that can be used for diagnostics, optoacoustic therapy/NPLT, and monitoring of therapeutic response during and after therapy. We developed and built pulsed, tunable, near infrared (680-1064 nm), fiber-coupled systems for optoacoustic theranostics and tested them in rats with traumatic brain injury (TBI). Low energy pulses were used for optoacoustic monitoring of cerebral blood oxygenation, while higher energy pulses were used for the NPLT. Our studies show that TBI results in cerebral hypoxia, while a 5-minute transcranial application of NPLT significantly reduces negative effects of TBI as assessed by vestibulomotor, cognitive, and immunofluorescence tests. The obtained results suggest that the optoacoustic theranostics may be used for diagnostics and management of TBI and other disorders.
KW - diagnostic
KW - noninvasive
KW - optoacoustic
KW - photoacoustic
KW - theranostics
KW - therapy
UR - http://www.scopus.com/inward/record.url?scp=85047311961&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85047311961&partnerID=8YFLogxK
U2 - 10.1117/12.2294053
DO - 10.1117/12.2294053
M3 - Conference contribution
AN - SCOPUS:85047311961
T3 - Progress in Biomedical Optics and Imaging - Proceedings of SPIE
BT - Photons Plus Ultrasound
A2 - Wang, Lihong V.
A2 - Oraevsky, Alexander A.
PB - SPIE
T2 - Photons Plus Ultrasound: Imaging and Sensing 2018
Y2 - 28 January 2018 through 1 February 2018
ER -