Optoacoustic theranostics

Irene Y. Petrov, Maria Adelaide Micci, Donald S. Prough, Yuriy Petrov, Jutatip Guptarak, Auston C. Grant, Margaret A. Parsley, Ian J. Bolding, Rinat O. Esenaliev

Research output: Chapter in Book/Report/Conference proceedingConference contribution


Optoacoustic diagnostics is based on detection and analysis of optoacoustic waves induced in tissues. It may find a number of important clinical applications in large populations of patients such as diagnostics of cerebral hypoxia, circulatory shock, etc. Recently, we proposed Nano-Pulse Laser Therapy (NPLT) which utilizes short optical pulses (typically, shorter than hundreds of nanoseconds) to generate optoacoustic waves in tissues upon stress-confined irradiation. It is well known that continuous wave low-level near-infrared light can be used for therapy/photobiomodulation to stimulate, repair, regenerate, and protect injured tissue. In the past few years, new works emerged on therapeutic effects of low-intensity ultrasound waves. The NPLT consists of irradiating tissue by both lowlevel light and optoacoustic waves/ultrasound that combines merits of low-level light and ultrasound therapies. In this work we propose optoacoustic theranostics that can be used for diagnostics, optoacoustic therapy/NPLT, and monitoring of therapeutic response during and after therapy. We developed and built pulsed, tunable, near infrared (680-1064 nm), fiber-coupled systems for optoacoustic theranostics and tested them in rats with traumatic brain injury (TBI). Low energy pulses were used for optoacoustic monitoring of cerebral blood oxygenation, while higher energy pulses were used for the NPLT. Our studies show that TBI results in cerebral hypoxia, while a 5-minute transcranial application of NPLT significantly reduces negative effects of TBI as assessed by vestibulomotor, cognitive, and immunofluorescence tests. The obtained results suggest that the optoacoustic theranostics may be used for diagnostics and management of TBI and other disorders.

Original languageEnglish (US)
Title of host publicationPhotons Plus Ultrasound
Subtitle of host publicationImaging and Sensing 2018
EditorsLihong V. Wang, Alexander A. Oraevsky
ISBN (Electronic)9781510614734
StatePublished - 2018
EventPhotons Plus Ultrasound: Imaging and Sensing 2018 - San Francisco, United States
Duration: Jan 28 2018Feb 1 2018

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
ISSN (Print)1605-7422


OtherPhotons Plus Ultrasound: Imaging and Sensing 2018
Country/TerritoryUnited States
CitySan Francisco


  • diagnostic
  • noninvasive
  • optoacoustic
  • photoacoustic
  • theranostics
  • therapy

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Biomaterials
  • Radiology Nuclear Medicine and imaging


Dive into the research topics of 'Optoacoustic theranostics'. Together they form a unique fingerprint.

Cite this