TY - JOUR
T1 - p12CDK2-AP1 gene therapy strategy inhibits tumor growth in an in vivo mouse model of head and neck cancer
AU - Figueiredo, Marxa L.
AU - Kim, Yong
AU - St. John, Maie A.R.
AU - Wong, David T.W.
PY - 2005/5/15
Y1 - 2005/5/15
N2 - Purpose: To test the potential of p12CDK2-AP1 (p12), a cell cycle regulator and cyclin-dependent kinase-2-associating protein commonly down-regulated in head and neck squamous cell carcinoma (∼70%), as a gene therapy in inhibiting head and neck squamous cell carcinoma growth in vivo. Experimental Design: We addressed the effect of p12 expression on tumor growth by using a well-established squamous cell carcinoma VII/SF floor of mouth xenograft mouse model. The effect of therapy on tumor growth was determined for: (a) no treatment, (b) PBS, (c) vehicle (1,2-dioleoyloxy-3-trimethylammonium propane:cholesterol liposomes / 5% dextrose), (d) empty vector controls, and (e) p12-encoding vector experimental groups. Results: p12 gene therapy significantly induced antitumor effects as compared with controls, including (a) size and weight of p12-treated tumors decreased by 51% to 72% compared with all controls (P < 0.02), (b) tumor growth rate post-therapy was inhibited by 55% to 64% compared with empty vector controls (P < 0.0001), and (c) p12 expression was higher in p12-treated than controls (P. < 0.002) by two-tailed t test analyses. Mechanistically, p12 treatment affected cell turnover kinetics as assessed by apoptotic and cell proliferation indices. p12 therapy significantly increased terminal nucleotidyl transferase - mediated nick end labeling (P < 0.05) and morphology-based apoptotic indices (P < 0.05) as well as significantly decreased Ki-67 cell proliferation indices (P < 0.001) compared with controls, resulting in a net cell turnover reduction in p12-treated tumors. Conclusions: We show that this novel therapeutic modality can significantly induce antitumor responses in vivo. These results support a role for p12 as a novel tumor growth suppressor gene therapy and suggest that optimization and/or combination with current therapies may hold considerable promise in preparation for clinical trials.
AB - Purpose: To test the potential of p12CDK2-AP1 (p12), a cell cycle regulator and cyclin-dependent kinase-2-associating protein commonly down-regulated in head and neck squamous cell carcinoma (∼70%), as a gene therapy in inhibiting head and neck squamous cell carcinoma growth in vivo. Experimental Design: We addressed the effect of p12 expression on tumor growth by using a well-established squamous cell carcinoma VII/SF floor of mouth xenograft mouse model. The effect of therapy on tumor growth was determined for: (a) no treatment, (b) PBS, (c) vehicle (1,2-dioleoyloxy-3-trimethylammonium propane:cholesterol liposomes / 5% dextrose), (d) empty vector controls, and (e) p12-encoding vector experimental groups. Results: p12 gene therapy significantly induced antitumor effects as compared with controls, including (a) size and weight of p12-treated tumors decreased by 51% to 72% compared with all controls (P < 0.02), (b) tumor growth rate post-therapy was inhibited by 55% to 64% compared with empty vector controls (P < 0.0001), and (c) p12 expression was higher in p12-treated than controls (P. < 0.002) by two-tailed t test analyses. Mechanistically, p12 treatment affected cell turnover kinetics as assessed by apoptotic and cell proliferation indices. p12 therapy significantly increased terminal nucleotidyl transferase - mediated nick end labeling (P < 0.05) and morphology-based apoptotic indices (P < 0.05) as well as significantly decreased Ki-67 cell proliferation indices (P < 0.001) compared with controls, resulting in a net cell turnover reduction in p12-treated tumors. Conclusions: We show that this novel therapeutic modality can significantly induce antitumor responses in vivo. These results support a role for p12 as a novel tumor growth suppressor gene therapy and suggest that optimization and/or combination with current therapies may hold considerable promise in preparation for clinical trials.
UR - http://www.scopus.com/inward/record.url?scp=18844365357&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=18844365357&partnerID=8YFLogxK
U2 - 10.1158/1078-0432.CCR-04-2085
DO - 10.1158/1078-0432.CCR-04-2085
M3 - Article
C2 - 15897596
AN - SCOPUS:18844365357
SN - 1078-0432
VL - 11
SP - 3939
EP - 3948
JO - Clinical Cancer Research
JF - Clinical Cancer Research
IS - 10
ER -