P47phox-/- mice are compromised in expansion and activation of CD8+ T cells and susceptible to Trypanosoma cruzi infection

Monisha Dhiman, Nisha Garg

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

Macrophage activation of NAD(P)H oxidase (NOX2) and reactive oxygen species (ROS) is suggested to kill Trypanosoma cruzi that causes Chagas disease. However, the role of NOX2 in generation of protective immunity and whether these mechanisms are deregulated in the event of NOX2 deficiency are not known, and examined in this study. Our data showed that C57BL/6 p47(phox-/-) mice (lack NOX2 activity), as compared to wild-type (WT) mice, succumbed within 30 days post-infection (pi) to low doses of T. cruzi and exhibited inability to control tissue parasites. P47(phox-/-) bone-marrow and splenic monocytes were not compromised in maturation, phagocytosis and parasite uptake capacity. The deficiency of NOX2 mediated ROS was compensated by higher level of inducible nitric oxide synthase (iNOS) expression, and nitric oxide and inflammatory cytokine (TNF-α, IFN-γ, IL-1β) release by p47(phox-/-) macrophages as compared to that noted in WT controls infected by T. cruzi. Splenic activation of Th1 CD4(+)T cells and tissue infiltration of immune cells in T. cruzi infected p47(phox-/-) mice were comparable to that noted in infected control mice. However, generation and activation of type 1 CD8(+)T cells was severely compromised in p47(phox-/-) mice. In comparison, WT mice exhibited a robust T. cruzi-specific CD8(+)T cell response with type 1 (IFN-γ(+)TNF-α>IL-4+IL-10), cytolytic effector (CD8(+)CD107a(+)IFN-γ(+)) phenotype. We conclude that NOX2/ROS activity in macrophages signals the development of antigen-specific CD8(+)T cell response. In the event of NOX2 deficiency, a compromised CD8(+)T cell response is generated, leading to increased parasite burden, tissue pathogenesis and mortality in chagasic mice.

Original languageEnglish (US)
Pages (from-to)e1004516
JournalPLoS Pathogens
Volume10
Issue number12
DOIs
StatePublished - Dec 1 2014

Fingerprint

Trypanosoma cruzi
T-Lymphocytes
Infection
Reactive Oxygen Species
Parasites
Macrophages
CD8 Antigens
Communicable Disease Control
Macrophage Activation
Chagas Disease
NADPH Oxidase
Nitric Oxide Synthase Type II
Interleukin-1
Phagocytosis
Interleukin-4
Interleukin-10
Monocytes
Immunity
Nitric Oxide
Bone Marrow

ASJC Scopus subject areas

  • Medicine(all)

Cite this

P47phox-/- mice are compromised in expansion and activation of CD8+ T cells and susceptible to Trypanosoma cruzi infection. / Dhiman, Monisha; Garg, Nisha.

In: PLoS Pathogens, Vol. 10, No. 12, 01.12.2014, p. e1004516.

Research output: Contribution to journalArticle

@article{f874238f0b304c75bfde2467e44edaba,
title = "P47phox-/- mice are compromised in expansion and activation of CD8+ T cells and susceptible to Trypanosoma cruzi infection",
abstract = "Macrophage activation of NAD(P)H oxidase (NOX2) and reactive oxygen species (ROS) is suggested to kill Trypanosoma cruzi that causes Chagas disease. However, the role of NOX2 in generation of protective immunity and whether these mechanisms are deregulated in the event of NOX2 deficiency are not known, and examined in this study. Our data showed that C57BL/6 p47(phox-/-) mice (lack NOX2 activity), as compared to wild-type (WT) mice, succumbed within 30 days post-infection (pi) to low doses of T. cruzi and exhibited inability to control tissue parasites. P47(phox-/-) bone-marrow and splenic monocytes were not compromised in maturation, phagocytosis and parasite uptake capacity. The deficiency of NOX2 mediated ROS was compensated by higher level of inducible nitric oxide synthase (iNOS) expression, and nitric oxide and inflammatory cytokine (TNF-α, IFN-γ, IL-1β) release by p47(phox-/-) macrophages as compared to that noted in WT controls infected by T. cruzi. Splenic activation of Th1 CD4(+)T cells and tissue infiltration of immune cells in T. cruzi infected p47(phox-/-) mice were comparable to that noted in infected control mice. However, generation and activation of type 1 CD8(+)T cells was severely compromised in p47(phox-/-) mice. In comparison, WT mice exhibited a robust T. cruzi-specific CD8(+)T cell response with type 1 (IFN-γ(+)TNF-α>IL-4+IL-10), cytolytic effector (CD8(+)CD107a(+)IFN-γ(+)) phenotype. We conclude that NOX2/ROS activity in macrophages signals the development of antigen-specific CD8(+)T cell response. In the event of NOX2 deficiency, a compromised CD8(+)T cell response is generated, leading to increased parasite burden, tissue pathogenesis and mortality in chagasic mice.",
author = "Monisha Dhiman and Nisha Garg",
year = "2014",
month = "12",
day = "1",
doi = "10.1371/journal.ppat.1004516",
language = "English (US)",
volume = "10",
pages = "e1004516",
journal = "PLoS Pathogens",
issn = "1553-7366",
publisher = "Public Library of Science",
number = "12",

}

TY - JOUR

T1 - P47phox-/- mice are compromised in expansion and activation of CD8+ T cells and susceptible to Trypanosoma cruzi infection

AU - Dhiman, Monisha

AU - Garg, Nisha

PY - 2014/12/1

Y1 - 2014/12/1

N2 - Macrophage activation of NAD(P)H oxidase (NOX2) and reactive oxygen species (ROS) is suggested to kill Trypanosoma cruzi that causes Chagas disease. However, the role of NOX2 in generation of protective immunity and whether these mechanisms are deregulated in the event of NOX2 deficiency are not known, and examined in this study. Our data showed that C57BL/6 p47(phox-/-) mice (lack NOX2 activity), as compared to wild-type (WT) mice, succumbed within 30 days post-infection (pi) to low doses of T. cruzi and exhibited inability to control tissue parasites. P47(phox-/-) bone-marrow and splenic monocytes were not compromised in maturation, phagocytosis and parasite uptake capacity. The deficiency of NOX2 mediated ROS was compensated by higher level of inducible nitric oxide synthase (iNOS) expression, and nitric oxide and inflammatory cytokine (TNF-α, IFN-γ, IL-1β) release by p47(phox-/-) macrophages as compared to that noted in WT controls infected by T. cruzi. Splenic activation of Th1 CD4(+)T cells and tissue infiltration of immune cells in T. cruzi infected p47(phox-/-) mice were comparable to that noted in infected control mice. However, generation and activation of type 1 CD8(+)T cells was severely compromised in p47(phox-/-) mice. In comparison, WT mice exhibited a robust T. cruzi-specific CD8(+)T cell response with type 1 (IFN-γ(+)TNF-α>IL-4+IL-10), cytolytic effector (CD8(+)CD107a(+)IFN-γ(+)) phenotype. We conclude that NOX2/ROS activity in macrophages signals the development of antigen-specific CD8(+)T cell response. In the event of NOX2 deficiency, a compromised CD8(+)T cell response is generated, leading to increased parasite burden, tissue pathogenesis and mortality in chagasic mice.

AB - Macrophage activation of NAD(P)H oxidase (NOX2) and reactive oxygen species (ROS) is suggested to kill Trypanosoma cruzi that causes Chagas disease. However, the role of NOX2 in generation of protective immunity and whether these mechanisms are deregulated in the event of NOX2 deficiency are not known, and examined in this study. Our data showed that C57BL/6 p47(phox-/-) mice (lack NOX2 activity), as compared to wild-type (WT) mice, succumbed within 30 days post-infection (pi) to low doses of T. cruzi and exhibited inability to control tissue parasites. P47(phox-/-) bone-marrow and splenic monocytes were not compromised in maturation, phagocytosis and parasite uptake capacity. The deficiency of NOX2 mediated ROS was compensated by higher level of inducible nitric oxide synthase (iNOS) expression, and nitric oxide and inflammatory cytokine (TNF-α, IFN-γ, IL-1β) release by p47(phox-/-) macrophages as compared to that noted in WT controls infected by T. cruzi. Splenic activation of Th1 CD4(+)T cells and tissue infiltration of immune cells in T. cruzi infected p47(phox-/-) mice were comparable to that noted in infected control mice. However, generation and activation of type 1 CD8(+)T cells was severely compromised in p47(phox-/-) mice. In comparison, WT mice exhibited a robust T. cruzi-specific CD8(+)T cell response with type 1 (IFN-γ(+)TNF-α>IL-4+IL-10), cytolytic effector (CD8(+)CD107a(+)IFN-γ(+)) phenotype. We conclude that NOX2/ROS activity in macrophages signals the development of antigen-specific CD8(+)T cell response. In the event of NOX2 deficiency, a compromised CD8(+)T cell response is generated, leading to increased parasite burden, tissue pathogenesis and mortality in chagasic mice.

UR - http://www.scopus.com/inward/record.url?scp=84964315880&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84964315880&partnerID=8YFLogxK

U2 - 10.1371/journal.ppat.1004516

DO - 10.1371/journal.ppat.1004516

M3 - Article

VL - 10

SP - e1004516

JO - PLoS Pathogens

JF - PLoS Pathogens

SN - 1553-7366

IS - 12

ER -