TY - JOUR
T1 - Pathways of epoxyeicosatrienoic acid metabolism in endothelial cells. Implications for the vascular effects of soluble epoxide hydrolase inhibition
AU - Fang, Xiang
AU - Kaduce, Terry L.
AU - Weintraub, Neal L.
AU - Harmon, Shawn
AU - Teesch, Lynn M.
AU - Morisseau, Christophe
AU - Thompson, David A.
AU - Hammock, Bruce D.
AU - Spector, Arthur A.
PY - 2001/5/4
Y1 - 2001/5/4
N2 - Epoxyeicosatrienoic acids (EETs) are products of cytochrome P-450 epoxygenase that possess important vasodilating and anti-inflammatory properties. EETs are converted to the corresponding dihydroxyeicosatrienoic acid (DHET) by soluble epoxide hydrolase (sEH) in mammalian tissues, and inhibition of sEH has been proposed as a novel approach for the treatment of hypertension. We observed that sEH is present in porcine coronary endothelial cells (PCEC), and we found that low concentrations of N,N′ -dicyclohexylurea (DCU), a selective sEH inhibitor, have profound effects on EET metabolism in PCEC cultures. Treatment with 3 μM DCU reduced cellular conversion of 14,15-EET to 14,15-DHET by 3-fold after 4 h of incubation, with a concomitant increase in the formation of the novel β-oxidation products 10,11-epoxy-16:2 and 8,9-epoxy-14:1. DCU also markedly enhanced the incorporation of 14,15-EET and its metabolites into PCEC lipids. The most abundant product in DCU-treated cells was 16,17-epoxy-22:3, the elongation product of 14,15-EET. Another novel metabolite, 14,15-epoxy-20:2, was present in DCU-treated cells. DCU also caused a 4-fold increase in release of 14,15-EET when the cells were stimulated with a calcium ionophore. Furthermore, DCU decreased the conversion of [3H]11,12-EET to 11,12-DHET, increased 11,12-EET retention in PCEC lipids, and produced an accumulation of the partial β-oxidation product 7,8-epoxy-16:2 in the medium. These findings suggest that in addition to being metabolized by sEH, EETs are substrates for β-oxidation and chain elongation in endothelial cells and that there is considerable interaction among the three pathways. The modulation of EET metabolism by DCU provides novel insight into the mechanisms by which pharmacological or molecular inhibition of sEH effectively treats hypertension.
AB - Epoxyeicosatrienoic acids (EETs) are products of cytochrome P-450 epoxygenase that possess important vasodilating and anti-inflammatory properties. EETs are converted to the corresponding dihydroxyeicosatrienoic acid (DHET) by soluble epoxide hydrolase (sEH) in mammalian tissues, and inhibition of sEH has been proposed as a novel approach for the treatment of hypertension. We observed that sEH is present in porcine coronary endothelial cells (PCEC), and we found that low concentrations of N,N′ -dicyclohexylurea (DCU), a selective sEH inhibitor, have profound effects on EET metabolism in PCEC cultures. Treatment with 3 μM DCU reduced cellular conversion of 14,15-EET to 14,15-DHET by 3-fold after 4 h of incubation, with a concomitant increase in the formation of the novel β-oxidation products 10,11-epoxy-16:2 and 8,9-epoxy-14:1. DCU also markedly enhanced the incorporation of 14,15-EET and its metabolites into PCEC lipids. The most abundant product in DCU-treated cells was 16,17-epoxy-22:3, the elongation product of 14,15-EET. Another novel metabolite, 14,15-epoxy-20:2, was present in DCU-treated cells. DCU also caused a 4-fold increase in release of 14,15-EET when the cells were stimulated with a calcium ionophore. Furthermore, DCU decreased the conversion of [3H]11,12-EET to 11,12-DHET, increased 11,12-EET retention in PCEC lipids, and produced an accumulation of the partial β-oxidation product 7,8-epoxy-16:2 in the medium. These findings suggest that in addition to being metabolized by sEH, EETs are substrates for β-oxidation and chain elongation in endothelial cells and that there is considerable interaction among the three pathways. The modulation of EET metabolism by DCU provides novel insight into the mechanisms by which pharmacological or molecular inhibition of sEH effectively treats hypertension.
UR - http://www.scopus.com/inward/record.url?scp=0035805539&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035805539&partnerID=8YFLogxK
U2 - 10.1074/jbc.M011761200
DO - 10.1074/jbc.M011761200
M3 - Article
C2 - 11278979
AN - SCOPUS:0035805539
SN - 0021-9258
VL - 276
SP - 14867
EP - 14874
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 18
ER -