Peroxynitrite-mediated DNA strand breakage activates poly-adenosine diphosphate ribosyl synthetase and causes cellular energy depletion in macrophages stimulated with bacterial lipopolysaccharide

Basilia Zingarelli, Michael O'Connor, Hector Wong, Andrew L. Salzman, Csaba Szabo

Research output: Contribution to journalArticle

300 Citations (Scopus)

Abstract

The inducible isoform of nitric oxide (NO) synthase produces large quantifies of NO, a cytotoxic free radical. Recent studies show that treatment with exogenous NO produces DNA strand breaks, activating the nuclear repair enzyme poly(ADP)ribosyltransferase (PARS), which results in ADP ribosylation, NAD+ consumption, and exhaustion of intracellular energy stores. Here we have characterized the cytotoxic effect of endogenous NO and peroxynitrite, a reactive oxidant formed from NO and superoxide. Immunostimulation of J774.2 macrophages with endotoxin resulted in the generation of superoxide (within 1 h) and NO (after 8 h). NO production paralleled an increase in peroxynitrite formation and DNA strand breakage, and a decrease in intracellular NAD+ content and mitochondrial respiration. Inhibition of NO synthase by N(G)-methyl-L-arginine or S-methyl-isothiourea or inhibition of PARS activity by 3-aminobenzamide or nicotinamide prevented the decrease in mitochondrial respiration and the depletion of NAD+. A similar pattern of free radical formation and cytotoxicity was observed in peritoneal macrophages from endotoxemic rats (formation of NO, superoxide, peroxynitrite, and DNA strand breaks). In vivo treatment with 3- aminobenzamide preserved mitochondrial respiration, NAD+, and ATP. Our data suggest that inflammatory cell injury involved DNA strand breakage and PARS, triggering an energy-consuming, futile repair cycle leading to cellular energy depletion. The active species responsible for the development of DNA strand breaks is peroxynitrite, rather than NO, since exogenous peroxynitrite, but not NO, induces DNA strand breaks. Inhibition of PARS may improve cellular energy homeostasis in pathophysiologic conditions associated with peroxynitrite generation.

Original languageEnglish (US)
Pages (from-to)350-358
Number of pages9
JournalJournal of Immunology
Volume156
Issue number1
StatePublished - Jan 1 1996
Externally publishedYes

Fingerprint

Peroxynitrous Acid
Ligases
Adenosine Diphosphate
Lipopolysaccharides
Nitric Oxide
Macrophages
ADP Ribose Transferases
DNA
DNA Breaks
NAD
Superoxides
Respiration
Free Radicals
Substrate Cycling
Niacinamide
Peritoneal Macrophages
Nitric Oxide Synthase Type II
Oxidants
Endotoxins
Nitric Oxide Synthase

ASJC Scopus subject areas

  • Immunology

Cite this

Peroxynitrite-mediated DNA strand breakage activates poly-adenosine diphosphate ribosyl synthetase and causes cellular energy depletion in macrophages stimulated with bacterial lipopolysaccharide. / Zingarelli, Basilia; O'Connor, Michael; Wong, Hector; Salzman, Andrew L.; Szabo, Csaba.

In: Journal of Immunology, Vol. 156, No. 1, 01.01.1996, p. 350-358.

Research output: Contribution to journalArticle

@article{881e006e6b5b452ca10a3408aacb3804,
title = "Peroxynitrite-mediated DNA strand breakage activates poly-adenosine diphosphate ribosyl synthetase and causes cellular energy depletion in macrophages stimulated with bacterial lipopolysaccharide",
abstract = "The inducible isoform of nitric oxide (NO) synthase produces large quantifies of NO, a cytotoxic free radical. Recent studies show that treatment with exogenous NO produces DNA strand breaks, activating the nuclear repair enzyme poly(ADP)ribosyltransferase (PARS), which results in ADP ribosylation, NAD+ consumption, and exhaustion of intracellular energy stores. Here we have characterized the cytotoxic effect of endogenous NO and peroxynitrite, a reactive oxidant formed from NO and superoxide. Immunostimulation of J774.2 macrophages with endotoxin resulted in the generation of superoxide (within 1 h) and NO (after 8 h). NO production paralleled an increase in peroxynitrite formation and DNA strand breakage, and a decrease in intracellular NAD+ content and mitochondrial respiration. Inhibition of NO synthase by N(G)-methyl-L-arginine or S-methyl-isothiourea or inhibition of PARS activity by 3-aminobenzamide or nicotinamide prevented the decrease in mitochondrial respiration and the depletion of NAD+. A similar pattern of free radical formation and cytotoxicity was observed in peritoneal macrophages from endotoxemic rats (formation of NO, superoxide, peroxynitrite, and DNA strand breaks). In vivo treatment with 3- aminobenzamide preserved mitochondrial respiration, NAD+, and ATP. Our data suggest that inflammatory cell injury involved DNA strand breakage and PARS, triggering an energy-consuming, futile repair cycle leading to cellular energy depletion. The active species responsible for the development of DNA strand breaks is peroxynitrite, rather than NO, since exogenous peroxynitrite, but not NO, induces DNA strand breaks. Inhibition of PARS may improve cellular energy homeostasis in pathophysiologic conditions associated with peroxynitrite generation.",
author = "Basilia Zingarelli and Michael O'Connor and Hector Wong and Salzman, {Andrew L.} and Csaba Szabo",
year = "1996",
month = "1",
day = "1",
language = "English (US)",
volume = "156",
pages = "350--358",
journal = "Journal of Immunology",
issn = "0022-1767",
publisher = "American Association of Immunologists",
number = "1",

}

TY - JOUR

T1 - Peroxynitrite-mediated DNA strand breakage activates poly-adenosine diphosphate ribosyl synthetase and causes cellular energy depletion in macrophages stimulated with bacterial lipopolysaccharide

AU - Zingarelli, Basilia

AU - O'Connor, Michael

AU - Wong, Hector

AU - Salzman, Andrew L.

AU - Szabo, Csaba

PY - 1996/1/1

Y1 - 1996/1/1

N2 - The inducible isoform of nitric oxide (NO) synthase produces large quantifies of NO, a cytotoxic free radical. Recent studies show that treatment with exogenous NO produces DNA strand breaks, activating the nuclear repair enzyme poly(ADP)ribosyltransferase (PARS), which results in ADP ribosylation, NAD+ consumption, and exhaustion of intracellular energy stores. Here we have characterized the cytotoxic effect of endogenous NO and peroxynitrite, a reactive oxidant formed from NO and superoxide. Immunostimulation of J774.2 macrophages with endotoxin resulted in the generation of superoxide (within 1 h) and NO (after 8 h). NO production paralleled an increase in peroxynitrite formation and DNA strand breakage, and a decrease in intracellular NAD+ content and mitochondrial respiration. Inhibition of NO synthase by N(G)-methyl-L-arginine or S-methyl-isothiourea or inhibition of PARS activity by 3-aminobenzamide or nicotinamide prevented the decrease in mitochondrial respiration and the depletion of NAD+. A similar pattern of free radical formation and cytotoxicity was observed in peritoneal macrophages from endotoxemic rats (formation of NO, superoxide, peroxynitrite, and DNA strand breaks). In vivo treatment with 3- aminobenzamide preserved mitochondrial respiration, NAD+, and ATP. Our data suggest that inflammatory cell injury involved DNA strand breakage and PARS, triggering an energy-consuming, futile repair cycle leading to cellular energy depletion. The active species responsible for the development of DNA strand breaks is peroxynitrite, rather than NO, since exogenous peroxynitrite, but not NO, induces DNA strand breaks. Inhibition of PARS may improve cellular energy homeostasis in pathophysiologic conditions associated with peroxynitrite generation.

AB - The inducible isoform of nitric oxide (NO) synthase produces large quantifies of NO, a cytotoxic free radical. Recent studies show that treatment with exogenous NO produces DNA strand breaks, activating the nuclear repair enzyme poly(ADP)ribosyltransferase (PARS), which results in ADP ribosylation, NAD+ consumption, and exhaustion of intracellular energy stores. Here we have characterized the cytotoxic effect of endogenous NO and peroxynitrite, a reactive oxidant formed from NO and superoxide. Immunostimulation of J774.2 macrophages with endotoxin resulted in the generation of superoxide (within 1 h) and NO (after 8 h). NO production paralleled an increase in peroxynitrite formation and DNA strand breakage, and a decrease in intracellular NAD+ content and mitochondrial respiration. Inhibition of NO synthase by N(G)-methyl-L-arginine or S-methyl-isothiourea or inhibition of PARS activity by 3-aminobenzamide or nicotinamide prevented the decrease in mitochondrial respiration and the depletion of NAD+. A similar pattern of free radical formation and cytotoxicity was observed in peritoneal macrophages from endotoxemic rats (formation of NO, superoxide, peroxynitrite, and DNA strand breaks). In vivo treatment with 3- aminobenzamide preserved mitochondrial respiration, NAD+, and ATP. Our data suggest that inflammatory cell injury involved DNA strand breakage and PARS, triggering an energy-consuming, futile repair cycle leading to cellular energy depletion. The active species responsible for the development of DNA strand breaks is peroxynitrite, rather than NO, since exogenous peroxynitrite, but not NO, induces DNA strand breaks. Inhibition of PARS may improve cellular energy homeostasis in pathophysiologic conditions associated with peroxynitrite generation.

UR - http://www.scopus.com/inward/record.url?scp=0030026515&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030026515&partnerID=8YFLogxK

M3 - Article

C2 - 8598485

AN - SCOPUS:0030026515

VL - 156

SP - 350

EP - 358

JO - Journal of Immunology

JF - Journal of Immunology

SN - 0022-1767

IS - 1

ER -