Phospholipase A2-activating protein (PLAA) enhances cisplatin-induced apoptosis in HeLa cells

Fan Zhang, Giovanni Suarez, Jian Sha, Johanna C. Sierra, Johnny Peterson, Ashok Chopra

Research output: Contribution to journalArticle

17 Citations (Scopus)

Abstract

Phospholipase A2 (PLA2)-activating protein (PLAA) is a novel signaling molecule that regulates eicosanoid production and participates in inflammatory responses. In our current study, we revealed that PLAA production was induced by the chemotherapeutic drug cisplatin in HeLa cervical carcinoma cells. To determine the potential pro-apoptotic effects of PLAA induction by cisplatin, we utilized HeLa (Tet-off) cells overexpressing the plaa gene (plaa high) and compared them with control (plaa low) cells, which produce endogenous plaa from the chromosome. Cisplatin-stimulated plaa high cells contained significantly higher levels of DNA fragmentation, caspase 3, 8 and 9 activities, PLA2 enzyme activity, and cytochrome c leakage from mitochondria than did the cisplatin-stimulated plaa low cells. Importantly, siRNA against PLAA (siRNA-PLAA) reduced the levels of cisplatin-induced PLAA, DNA fragmentation, and PLA2 activation, while promoting cell viability in both plaa high and plaa low cells. Cisplatin-induced-cytochrome c leakage in plaa high cells was reduced by siRNA-PLAA and restored by the addition of exogenous arachidonic acid (AA), suggesting to us that PLAA induction by cisplatin promoted cytochrome c leakage/mitochondrial damage partially by accumulating AA. In addition, cisplatin-stimulated plaa high cells produced less cytoprotective clusterin than did the cisplatin-stimulated plaa low cells, and siRNA-PLAA promoted clusterin production from both plaa high and plaa low cells. We showed that clusterin reduced DNA fragmentation in cisplatin-stimulated plaa high and plaa low cells, which is consistent with the notion that clusterin promotes cancer chemoresistance. Furthermore, cisplatin-stimulated plaa high cells produced more IL-32 (a pro-apoptotic protein) than did cisplatin-stimulated plaa low cells, and siRNA-PLAA reduced IL-32 production from both plaa high and plaa low cells. Finally, our proteomic analysis revealed that cisplatin-stimulated plaa high cells contained higher levels of phosphorylated JNK/c-Jun and FasL than did plaa low cells treated the same way. In summary, our data indicated that PLAA induction enhanced cisplatin-induced-apoptosis through four pathways, namely by: 1) accumulation of AA and mitochondrial damage, 2) downregulation of the cytoprotective clusterin, 3) upregulation of the pro-apoptotic IL-32, and 4) induction of JNK/c-Jun signaling and FasL expression.

Original languageEnglish (US)
Pages (from-to)1085-1099
Number of pages15
JournalCellular Signalling
Volume21
Issue number7
DOIs
StatePublished - Jul 2009

Fingerprint

HeLa Cells
Cisplatin
Apoptosis
Clusterin
Small Interfering RNA
DNA Fragmentation
Cytochromes c
Arachidonic Acid
Phospholipases A2
phospholipase A2-activating protein
Apoptosis Regulatory Proteins
Eicosanoids
Caspase 9
Caspase 8
Caspase 3
Interleukin-4
Proteomics
Cell Survival
Mitochondria
Up-Regulation

Keywords

  • Apoptosis
  • Cisplatin
  • HeLa cells
  • PLAA
  • Signaling cascade
  • siRNA

ASJC Scopus subject areas

  • Cell Biology

Cite this

Phospholipase A2-activating protein (PLAA) enhances cisplatin-induced apoptosis in HeLa cells. / Zhang, Fan; Suarez, Giovanni; Sha, Jian; Sierra, Johanna C.; Peterson, Johnny; Chopra, Ashok.

In: Cellular Signalling, Vol. 21, No. 7, 07.2009, p. 1085-1099.

Research output: Contribution to journalArticle

@article{d9f91f997b5a478a8b07e3fb399bcd29,
title = "Phospholipase A2-activating protein (PLAA) enhances cisplatin-induced apoptosis in HeLa cells",
abstract = "Phospholipase A2 (PLA2)-activating protein (PLAA) is a novel signaling molecule that regulates eicosanoid production and participates in inflammatory responses. In our current study, we revealed that PLAA production was induced by the chemotherapeutic drug cisplatin in HeLa cervical carcinoma cells. To determine the potential pro-apoptotic effects of PLAA induction by cisplatin, we utilized HeLa (Tet-off) cells overexpressing the plaa gene (plaa high) and compared them with control (plaa low) cells, which produce endogenous plaa from the chromosome. Cisplatin-stimulated plaa high cells contained significantly higher levels of DNA fragmentation, caspase 3, 8 and 9 activities, PLA2 enzyme activity, and cytochrome c leakage from mitochondria than did the cisplatin-stimulated plaa low cells. Importantly, siRNA against PLAA (siRNA-PLAA) reduced the levels of cisplatin-induced PLAA, DNA fragmentation, and PLA2 activation, while promoting cell viability in both plaa high and plaa low cells. Cisplatin-induced-cytochrome c leakage in plaa high cells was reduced by siRNA-PLAA and restored by the addition of exogenous arachidonic acid (AA), suggesting to us that PLAA induction by cisplatin promoted cytochrome c leakage/mitochondrial damage partially by accumulating AA. In addition, cisplatin-stimulated plaa high cells produced less cytoprotective clusterin than did the cisplatin-stimulated plaa low cells, and siRNA-PLAA promoted clusterin production from both plaa high and plaa low cells. We showed that clusterin reduced DNA fragmentation in cisplatin-stimulated plaa high and plaa low cells, which is consistent with the notion that clusterin promotes cancer chemoresistance. Furthermore, cisplatin-stimulated plaa high cells produced more IL-32 (a pro-apoptotic protein) than did cisplatin-stimulated plaa low cells, and siRNA-PLAA reduced IL-32 production from both plaa high and plaa low cells. Finally, our proteomic analysis revealed that cisplatin-stimulated plaa high cells contained higher levels of phosphorylated JNK/c-Jun and FasL than did plaa low cells treated the same way. In summary, our data indicated that PLAA induction enhanced cisplatin-induced-apoptosis through four pathways, namely by: 1) accumulation of AA and mitochondrial damage, 2) downregulation of the cytoprotective clusterin, 3) upregulation of the pro-apoptotic IL-32, and 4) induction of JNK/c-Jun signaling and FasL expression.",
keywords = "Apoptosis, Cisplatin, HeLa cells, PLAA, Signaling cascade, siRNA",
author = "Fan Zhang and Giovanni Suarez and Jian Sha and Sierra, {Johanna C.} and Johnny Peterson and Ashok Chopra",
year = "2009",
month = "7",
doi = "10.1016/j.cellsig.2009.02.018",
language = "English (US)",
volume = "21",
pages = "1085--1099",
journal = "Cellular Signalling",
issn = "0898-6568",
publisher = "Elsevier Inc.",
number = "7",

}

TY - JOUR

T1 - Phospholipase A2-activating protein (PLAA) enhances cisplatin-induced apoptosis in HeLa cells

AU - Zhang, Fan

AU - Suarez, Giovanni

AU - Sha, Jian

AU - Sierra, Johanna C.

AU - Peterson, Johnny

AU - Chopra, Ashok

PY - 2009/7

Y1 - 2009/7

N2 - Phospholipase A2 (PLA2)-activating protein (PLAA) is a novel signaling molecule that regulates eicosanoid production and participates in inflammatory responses. In our current study, we revealed that PLAA production was induced by the chemotherapeutic drug cisplatin in HeLa cervical carcinoma cells. To determine the potential pro-apoptotic effects of PLAA induction by cisplatin, we utilized HeLa (Tet-off) cells overexpressing the plaa gene (plaa high) and compared them with control (plaa low) cells, which produce endogenous plaa from the chromosome. Cisplatin-stimulated plaa high cells contained significantly higher levels of DNA fragmentation, caspase 3, 8 and 9 activities, PLA2 enzyme activity, and cytochrome c leakage from mitochondria than did the cisplatin-stimulated plaa low cells. Importantly, siRNA against PLAA (siRNA-PLAA) reduced the levels of cisplatin-induced PLAA, DNA fragmentation, and PLA2 activation, while promoting cell viability in both plaa high and plaa low cells. Cisplatin-induced-cytochrome c leakage in plaa high cells was reduced by siRNA-PLAA and restored by the addition of exogenous arachidonic acid (AA), suggesting to us that PLAA induction by cisplatin promoted cytochrome c leakage/mitochondrial damage partially by accumulating AA. In addition, cisplatin-stimulated plaa high cells produced less cytoprotective clusterin than did the cisplatin-stimulated plaa low cells, and siRNA-PLAA promoted clusterin production from both plaa high and plaa low cells. We showed that clusterin reduced DNA fragmentation in cisplatin-stimulated plaa high and plaa low cells, which is consistent with the notion that clusterin promotes cancer chemoresistance. Furthermore, cisplatin-stimulated plaa high cells produced more IL-32 (a pro-apoptotic protein) than did cisplatin-stimulated plaa low cells, and siRNA-PLAA reduced IL-32 production from both plaa high and plaa low cells. Finally, our proteomic analysis revealed that cisplatin-stimulated plaa high cells contained higher levels of phosphorylated JNK/c-Jun and FasL than did plaa low cells treated the same way. In summary, our data indicated that PLAA induction enhanced cisplatin-induced-apoptosis through four pathways, namely by: 1) accumulation of AA and mitochondrial damage, 2) downregulation of the cytoprotective clusterin, 3) upregulation of the pro-apoptotic IL-32, and 4) induction of JNK/c-Jun signaling and FasL expression.

AB - Phospholipase A2 (PLA2)-activating protein (PLAA) is a novel signaling molecule that regulates eicosanoid production and participates in inflammatory responses. In our current study, we revealed that PLAA production was induced by the chemotherapeutic drug cisplatin in HeLa cervical carcinoma cells. To determine the potential pro-apoptotic effects of PLAA induction by cisplatin, we utilized HeLa (Tet-off) cells overexpressing the plaa gene (plaa high) and compared them with control (plaa low) cells, which produce endogenous plaa from the chromosome. Cisplatin-stimulated plaa high cells contained significantly higher levels of DNA fragmentation, caspase 3, 8 and 9 activities, PLA2 enzyme activity, and cytochrome c leakage from mitochondria than did the cisplatin-stimulated plaa low cells. Importantly, siRNA against PLAA (siRNA-PLAA) reduced the levels of cisplatin-induced PLAA, DNA fragmentation, and PLA2 activation, while promoting cell viability in both plaa high and plaa low cells. Cisplatin-induced-cytochrome c leakage in plaa high cells was reduced by siRNA-PLAA and restored by the addition of exogenous arachidonic acid (AA), suggesting to us that PLAA induction by cisplatin promoted cytochrome c leakage/mitochondrial damage partially by accumulating AA. In addition, cisplatin-stimulated plaa high cells produced less cytoprotective clusterin than did the cisplatin-stimulated plaa low cells, and siRNA-PLAA promoted clusterin production from both plaa high and plaa low cells. We showed that clusterin reduced DNA fragmentation in cisplatin-stimulated plaa high and plaa low cells, which is consistent with the notion that clusterin promotes cancer chemoresistance. Furthermore, cisplatin-stimulated plaa high cells produced more IL-32 (a pro-apoptotic protein) than did cisplatin-stimulated plaa low cells, and siRNA-PLAA reduced IL-32 production from both plaa high and plaa low cells. Finally, our proteomic analysis revealed that cisplatin-stimulated plaa high cells contained higher levels of phosphorylated JNK/c-Jun and FasL than did plaa low cells treated the same way. In summary, our data indicated that PLAA induction enhanced cisplatin-induced-apoptosis through four pathways, namely by: 1) accumulation of AA and mitochondrial damage, 2) downregulation of the cytoprotective clusterin, 3) upregulation of the pro-apoptotic IL-32, and 4) induction of JNK/c-Jun signaling and FasL expression.

KW - Apoptosis

KW - Cisplatin

KW - HeLa cells

KW - PLAA

KW - Signaling cascade

KW - siRNA

UR - http://www.scopus.com/inward/record.url?scp=66149192674&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=66149192674&partnerID=8YFLogxK

U2 - 10.1016/j.cellsig.2009.02.018

DO - 10.1016/j.cellsig.2009.02.018

M3 - Article

VL - 21

SP - 1085

EP - 1099

JO - Cellular Signalling

JF - Cellular Signalling

SN - 0898-6568

IS - 7

ER -