TY - GEN
T1 - Poly (ADP-ribose) polymerase activation and circulatory shock
AU - Szabó, Csaba
PY - 2007
Y1 - 2007
N2 - Sepsis is associated with increased production of reactive oxidant species. Oxidative and nitrosative stress can lead to activation of the nuclear enzyme poly (ADP-ribose) polymerase (PARP), with subsequent loss of cellular functions. Activation of PARP may dramatically lower the intracellular concentration of its substrate, NAD thus slowing the rate of glycolysis, electron transport and subsequently ATP formation. This process can result in cell dysfunction and cell death. In addition, PARP enhances the expression of various pro-inflammatory mediators, via activation of NF-κB, MAP kinase and AP-1 and other signal transduction pathways. Preclinical studies in various rodent and large animal models demonstrate that PARP inhibition or PAR deficiency exerts beneficial effects on the haemodynamic and metabolic alterations associated with septic and haemorrhagic shock. Recent human data also support the role of PARP in septic shock: In a retrospective study in 25 septic patients, an increase in plasma troponin level was related to increased mortality risk. In patients who died, significant myocardial damage was detected, and histological analysis of heart showed inflammatory infiltration, increased collagen deposition, and derangement of mitochondrial criptae. Immunohistochemical staining for poly(ADP-ribose) (PAR), the product of activated PARP was demonstrated in septic hearts. There was a positive correlation between PAR staining and troponin I; and a correlation of PAR staining and LVSSW. Thus, there is significant PARP activation in animal models subjected to circulatory shock, as well as in the hearts of septic patients. Based on the interventional studies in animals and the correlations observed in patients we propose that PARP activation may be, in part responsible for the cardiac depression and haemodynamic failure seen in humans with severe sepsis. Interestingly, recent studies reveal that the protective effects of PARP inhibitors are predominant in male animals, and are not apparent in female animals. Oestrogen, by providing a baseline inhibitory effect on PARP activation, may be partially responsible for this gender difference.
AB - Sepsis is associated with increased production of reactive oxidant species. Oxidative and nitrosative stress can lead to activation of the nuclear enzyme poly (ADP-ribose) polymerase (PARP), with subsequent loss of cellular functions. Activation of PARP may dramatically lower the intracellular concentration of its substrate, NAD thus slowing the rate of glycolysis, electron transport and subsequently ATP formation. This process can result in cell dysfunction and cell death. In addition, PARP enhances the expression of various pro-inflammatory mediators, via activation of NF-κB, MAP kinase and AP-1 and other signal transduction pathways. Preclinical studies in various rodent and large animal models demonstrate that PARP inhibition or PAR deficiency exerts beneficial effects on the haemodynamic and metabolic alterations associated with septic and haemorrhagic shock. Recent human data also support the role of PARP in septic shock: In a retrospective study in 25 septic patients, an increase in plasma troponin level was related to increased mortality risk. In patients who died, significant myocardial damage was detected, and histological analysis of heart showed inflammatory infiltration, increased collagen deposition, and derangement of mitochondrial criptae. Immunohistochemical staining for poly(ADP-ribose) (PAR), the product of activated PARP was demonstrated in septic hearts. There was a positive correlation between PAR staining and troponin I; and a correlation of PAR staining and LVSSW. Thus, there is significant PARP activation in animal models subjected to circulatory shock, as well as in the hearts of septic patients. Based on the interventional studies in animals and the correlations observed in patients we propose that PARP activation may be, in part responsible for the cardiac depression and haemodynamic failure seen in humans with severe sepsis. Interestingly, recent studies reveal that the protective effects of PARP inhibitors are predominant in male animals, and are not apparent in female animals. Oestrogen, by providing a baseline inhibitory effect on PARP activation, may be partially responsible for this gender difference.
UR - http://www.scopus.com/inward/record.url?scp=34247154353&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34247154353&partnerID=8YFLogxK
M3 - Conference contribution
C2 - 17380790
AN - SCOPUS:34247154353
SN - 9780470027981
T3 - Novartis Foundation Symposium
SP - 92
EP - 103
BT - Sepsis
ER -