TY - JOUR
T1 - Positron emission tomography imaging in nonmalignant thoracic disorders
AU - Alavi, Abass
AU - Gupta, Naresh
AU - Alberini, Jean Louis
AU - Hickeson, Marc
AU - Adam, Lars Eric
AU - Bhargava, Peeyush
AU - Zhuang, Hongming
N1 - Copyright:
Copyright 2018 Elsevier B.V., All rights reserved.
PY - 2002/10
Y1 - 2002/10
N2 - The role of the fluorodeoxyglucose (FDG) technique positron emission tomography (PET) is well established in the management of patients with lung cancer. Increasingly, it is becoming evident that FDG-PET can be effectively employed to diagnose a variety of benign pulmonary disorders. Knowledge of such applications further expands the domain of this powerful modality and further improves the ability to differentiate benign from malignant diseases of the chest. We describe pertinent technical factors that substantially contribute to optimal imaging of the thoracic structures. Particularly, the complementary role of attenuation correction (AC) to that of non-AC images is emphasized. We further outline the need for and the state of the art for co-registration of PET and anatomic images for diagnostic and therapeutic purposes. We then review patterns of physiologic uptake of FDG in thoracic structures, including the lung, the heart, the aorta and large arteries, esophagus, thymus, trachea, thoracic muscles, bone marrow, and joints and alterations following radiation therapy to the thorax. A great deal of information is provided with regard to differentiating benign from malignant nodules and in particular, we emphasize the role of dual time point imaging and partial volume correction for accurate assessment of such lesions. Following a brief review of the diagnostic issues related to the assessment of mediastinal adenopathies, the role of FDG-PET imaging in environment-induced lung diseases, including pneumoconiosis, smoking, and asthma are described. A large body of information is provided about the role of this technology in the management of patients with suspected infection and inflammation of the lungs such as acquired immunodeficiency syndrome, fever of unknown origin, sarcoidosis, chronic granulomatous disease and monitoring the disease process and response to therapy. Finally, the value of FDG-PET in differentiating benign from malignant diseases of the pleura including asbestosis-related disorders is described at the conclusion of this comprehensive review.
AB - The role of the fluorodeoxyglucose (FDG) technique positron emission tomography (PET) is well established in the management of patients with lung cancer. Increasingly, it is becoming evident that FDG-PET can be effectively employed to diagnose a variety of benign pulmonary disorders. Knowledge of such applications further expands the domain of this powerful modality and further improves the ability to differentiate benign from malignant diseases of the chest. We describe pertinent technical factors that substantially contribute to optimal imaging of the thoracic structures. Particularly, the complementary role of attenuation correction (AC) to that of non-AC images is emphasized. We further outline the need for and the state of the art for co-registration of PET and anatomic images for diagnostic and therapeutic purposes. We then review patterns of physiologic uptake of FDG in thoracic structures, including the lung, the heart, the aorta and large arteries, esophagus, thymus, trachea, thoracic muscles, bone marrow, and joints and alterations following radiation therapy to the thorax. A great deal of information is provided with regard to differentiating benign from malignant nodules and in particular, we emphasize the role of dual time point imaging and partial volume correction for accurate assessment of such lesions. Following a brief review of the diagnostic issues related to the assessment of mediastinal adenopathies, the role of FDG-PET imaging in environment-induced lung diseases, including pneumoconiosis, smoking, and asthma are described. A large body of information is provided about the role of this technology in the management of patients with suspected infection and inflammation of the lungs such as acquired immunodeficiency syndrome, fever of unknown origin, sarcoidosis, chronic granulomatous disease and monitoring the disease process and response to therapy. Finally, the value of FDG-PET in differentiating benign from malignant diseases of the pleura including asbestosis-related disorders is described at the conclusion of this comprehensive review.
UR - http://www.scopus.com/inward/record.url?scp=0036809601&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036809601&partnerID=8YFLogxK
U2 - 10.1053/snuc.2002.127291
DO - 10.1053/snuc.2002.127291
M3 - Article
C2 - 12524653
AN - SCOPUS:0036809601
SN - 0001-2998
VL - 32
SP - 293
EP - 321
JO - Seminars in Nuclear Medicine
JF - Seminars in Nuclear Medicine
IS - 4
ER -