Postexercise essential amino acid supplementation amplifies skeletal muscle satellite cell proliferation in older men 24 hours postexercise

Paul T. Reidy, Christopher Fry, Jared M. Dickinson, Micah J. Drummond, Blake Rasmussen

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

Aged skeletal muscle has an attenuated and delayed ability to proliferate satellite cells in response to resistance exercise. The mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway is a focal point for cell growth, however, the effect of postexercise mTORC1 activation on human skeletal muscle satellite cell (SC) proliferation is unknown. To test the proliferative capacity of skeletal muscle SC in aging muscle to a potent mTORC1 activator (i.e., EAA; essential amino acids) we recruited older (~72y) men to conduct leg resistance exercise (8setsx10reps) without (−EAA; n = 8) and with (+EAA: n = 11) ingestion of 10 g of EAA 1 h postexercise. Muscle biopsies were taken before exercise (Pre) and 24 h postexercise (Post) for assessment of expression and fiber type-specific Pax7+ SC, Ki67+Pax7+ SC and MyoD+ SC. −EAA did not show an increase in Pax7+ satellite cells at Post(P > 0.82). Although statistical significance for an increase in Pax7 + SC at 24 h post-RE was not observed in +EAA versus −EAA, we observed trends for a treatment difference (P < 0.1). When examining the change from Pre to Post trends were demonstrated (#/myofiber: P = 0.076; and %/myonuclei: P = 0.065) for a greater increase in +EAA versus −EAA. Notably, we found an increase SC proliferation in +EAA, but not −EAA with increase in Ki67+ SC and MyoD+ cells (P < 0.05). Ki67+ SC also exhibited a significant group difference Post (P < 0.010). Pax7+ SC in fast twitch myofibers did not change and were not different between groups (P > 0.10). CDK2, MEF2C, RB1 mRNA only increased in +EAA (P < 0.05). Acute muscle satellite cell proliferative capacity may be partially rescued with postexercise EAA ingestion in older men.

Original languageEnglish (US)
Article numbere13269
JournalPhysiological Reports
Volume5
Issue number11
DOIs
StatePublished - Jun 1 2017

Fingerprint

Skeletal Muscle Satellite Cells
Essential Amino Acids
Cell Proliferation
Exercise
Eating
Muscles
Cell Aging
Muscle Cells
Leg
Skeletal Muscle
Biopsy
Messenger RNA

Keywords

  • Stem cell activation
  • strength training

ASJC Scopus subject areas

  • Physiology (medical)
  • Physiology

Cite this

Postexercise essential amino acid supplementation amplifies skeletal muscle satellite cell proliferation in older men 24 hours postexercise. / Reidy, Paul T.; Fry, Christopher; Dickinson, Jared M.; Drummond, Micah J.; Rasmussen, Blake.

In: Physiological Reports, Vol. 5, No. 11, e13269, 01.06.2017.

Research output: Contribution to journalArticle

@article{bf89a439570b4fb683ac8769f41f8581,
title = "Postexercise essential amino acid supplementation amplifies skeletal muscle satellite cell proliferation in older men 24 hours postexercise",
abstract = "Aged skeletal muscle has an attenuated and delayed ability to proliferate satellite cells in response to resistance exercise. The mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway is a focal point for cell growth, however, the effect of postexercise mTORC1 activation on human skeletal muscle satellite cell (SC) proliferation is unknown. To test the proliferative capacity of skeletal muscle SC in aging muscle to a potent mTORC1 activator (i.e., EAA; essential amino acids) we recruited older (~72y) men to conduct leg resistance exercise (8setsx10reps) without (−EAA; n = 8) and with (+EAA: n = 11) ingestion of 10 g of EAA 1 h postexercise. Muscle biopsies were taken before exercise (Pre) and 24 h postexercise (Post) for assessment of expression and fiber type-specific Pax7+ SC, Ki67+Pax7+ SC and MyoD+ SC. −EAA did not show an increase in Pax7+ satellite cells at Post(P > 0.82). Although statistical significance for an increase in Pax7 + SC at 24 h post-RE was not observed in +EAA versus −EAA, we observed trends for a treatment difference (P < 0.1). When examining the change from Pre to Post trends were demonstrated (#/myofiber: P = 0.076; and {\%}/myonuclei: P = 0.065) for a greater increase in +EAA versus −EAA. Notably, we found an increase SC proliferation in +EAA, but not −EAA with increase in Ki67+ SC and MyoD+ cells (P < 0.05). Ki67+ SC also exhibited a significant group difference Post (P < 0.010). Pax7+ SC in fast twitch myofibers did not change and were not different between groups (P > 0.10). CDK2, MEF2C, RB1 mRNA only increased in +EAA (P < 0.05). Acute muscle satellite cell proliferative capacity may be partially rescued with postexercise EAA ingestion in older men.",
keywords = "Stem cell activation, strength training",
author = "Reidy, {Paul T.} and Christopher Fry and Dickinson, {Jared M.} and Drummond, {Micah J.} and Blake Rasmussen",
year = "2017",
month = "6",
day = "1",
doi = "10.14814/phy2.13269",
language = "English (US)",
volume = "5",
journal = "Physiological Reports",
issn = "2051-817X",
publisher = "John Wiley and Sons Inc.",
number = "11",

}

TY - JOUR

T1 - Postexercise essential amino acid supplementation amplifies skeletal muscle satellite cell proliferation in older men 24 hours postexercise

AU - Reidy, Paul T.

AU - Fry, Christopher

AU - Dickinson, Jared M.

AU - Drummond, Micah J.

AU - Rasmussen, Blake

PY - 2017/6/1

Y1 - 2017/6/1

N2 - Aged skeletal muscle has an attenuated and delayed ability to proliferate satellite cells in response to resistance exercise. The mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway is a focal point for cell growth, however, the effect of postexercise mTORC1 activation on human skeletal muscle satellite cell (SC) proliferation is unknown. To test the proliferative capacity of skeletal muscle SC in aging muscle to a potent mTORC1 activator (i.e., EAA; essential amino acids) we recruited older (~72y) men to conduct leg resistance exercise (8setsx10reps) without (−EAA; n = 8) and with (+EAA: n = 11) ingestion of 10 g of EAA 1 h postexercise. Muscle biopsies were taken before exercise (Pre) and 24 h postexercise (Post) for assessment of expression and fiber type-specific Pax7+ SC, Ki67+Pax7+ SC and MyoD+ SC. −EAA did not show an increase in Pax7+ satellite cells at Post(P > 0.82). Although statistical significance for an increase in Pax7 + SC at 24 h post-RE was not observed in +EAA versus −EAA, we observed trends for a treatment difference (P < 0.1). When examining the change from Pre to Post trends were demonstrated (#/myofiber: P = 0.076; and %/myonuclei: P = 0.065) for a greater increase in +EAA versus −EAA. Notably, we found an increase SC proliferation in +EAA, but not −EAA with increase in Ki67+ SC and MyoD+ cells (P < 0.05). Ki67+ SC also exhibited a significant group difference Post (P < 0.010). Pax7+ SC in fast twitch myofibers did not change and were not different between groups (P > 0.10). CDK2, MEF2C, RB1 mRNA only increased in +EAA (P < 0.05). Acute muscle satellite cell proliferative capacity may be partially rescued with postexercise EAA ingestion in older men.

AB - Aged skeletal muscle has an attenuated and delayed ability to proliferate satellite cells in response to resistance exercise. The mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway is a focal point for cell growth, however, the effect of postexercise mTORC1 activation on human skeletal muscle satellite cell (SC) proliferation is unknown. To test the proliferative capacity of skeletal muscle SC in aging muscle to a potent mTORC1 activator (i.e., EAA; essential amino acids) we recruited older (~72y) men to conduct leg resistance exercise (8setsx10reps) without (−EAA; n = 8) and with (+EAA: n = 11) ingestion of 10 g of EAA 1 h postexercise. Muscle biopsies were taken before exercise (Pre) and 24 h postexercise (Post) for assessment of expression and fiber type-specific Pax7+ SC, Ki67+Pax7+ SC and MyoD+ SC. −EAA did not show an increase in Pax7+ satellite cells at Post(P > 0.82). Although statistical significance for an increase in Pax7 + SC at 24 h post-RE was not observed in +EAA versus −EAA, we observed trends for a treatment difference (P < 0.1). When examining the change from Pre to Post trends were demonstrated (#/myofiber: P = 0.076; and %/myonuclei: P = 0.065) for a greater increase in +EAA versus −EAA. Notably, we found an increase SC proliferation in +EAA, but not −EAA with increase in Ki67+ SC and MyoD+ cells (P < 0.05). Ki67+ SC also exhibited a significant group difference Post (P < 0.010). Pax7+ SC in fast twitch myofibers did not change and were not different between groups (P > 0.10). CDK2, MEF2C, RB1 mRNA only increased in +EAA (P < 0.05). Acute muscle satellite cell proliferative capacity may be partially rescued with postexercise EAA ingestion in older men.

KW - Stem cell activation

KW - strength training

UR - http://www.scopus.com/inward/record.url?scp=85020772832&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85020772832&partnerID=8YFLogxK

U2 - 10.14814/phy2.13269

DO - 10.14814/phy2.13269

M3 - Article

VL - 5

JO - Physiological Reports

JF - Physiological Reports

SN - 2051-817X

IS - 11

M1 - e13269

ER -