TY - JOUR
T1 - Potential for transcriptional upregulation of cochlin in glaucomatous trabecular meshwork
T2 - A combinatorial bioinformatic and biochemical analytical approach
AU - Picciani, Renata G.
AU - Diaz, Anthony
AU - Lee, Richard K.
AU - Bhattacharya, Sanjoy K.
PY - 2009
Y1 - 2009
N2 - PURPOSE. To determine the existence of a relatively higher abundance of potential TFs in glaucomatous trabecular meshwork (TM) that may bind putative promoter regions and affect cochlin protein expression in glaucomatous compared to normal TM. METHODS. Combinatorial bioinformatics and biochemical analyses, using human glaucomatous and normal donor tissue (n = 4 each). Biochemical analysis included electrophoretic mobility shift assays (EMSAs), filter binding assays (FBAs), coupled in vitro transcription-translation (TNT) assays and promoter mutation analysis. RESULTS. Combinatorial bioinformatics and biochemical analyses revealed the existence of a higher abundance of TFs in glaucomatous than in normal TM nuclear extracts. The evidence of a relatively high abundance of TFs, leading to increased expression of cochlin predicted by bioinformatic and biochemical analyses (EMSA and FBA), was further supported by TNT and promoter mutation TNT assays. CONCLUSIONS. These results support the finding that the observed increased cochlin expression in glaucomatous TM is due to relative elevated abundance of TFs. The results also demonstrate the utility of combinatorial bioinformatic and biochemical analyses for genes with uncharacterized promoter regions.
AB - PURPOSE. To determine the existence of a relatively higher abundance of potential TFs in glaucomatous trabecular meshwork (TM) that may bind putative promoter regions and affect cochlin protein expression in glaucomatous compared to normal TM. METHODS. Combinatorial bioinformatics and biochemical analyses, using human glaucomatous and normal donor tissue (n = 4 each). Biochemical analysis included electrophoretic mobility shift assays (EMSAs), filter binding assays (FBAs), coupled in vitro transcription-translation (TNT) assays and promoter mutation analysis. RESULTS. Combinatorial bioinformatics and biochemical analyses revealed the existence of a higher abundance of TFs in glaucomatous than in normal TM nuclear extracts. The evidence of a relatively high abundance of TFs, leading to increased expression of cochlin predicted by bioinformatic and biochemical analyses (EMSA and FBA), was further supported by TNT and promoter mutation TNT assays. CONCLUSIONS. These results support the finding that the observed increased cochlin expression in glaucomatous TM is due to relative elevated abundance of TFs. The results also demonstrate the utility of combinatorial bioinformatic and biochemical analyses for genes with uncharacterized promoter regions.
UR - http://www.scopus.com/inward/record.url?scp=67649986445&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=67649986445&partnerID=8YFLogxK
U2 - 10.1167/iovs.08-3106
DO - 10.1167/iovs.08-3106
M3 - Article
C2 - 19098315
AN - SCOPUS:67649986445
SN - 0146-0404
VL - 50
SP - 3106
EP - 3111
JO - Investigative Ophthalmology and Visual Science
JF - Investigative Ophthalmology and Visual Science
IS - 7
ER -