TY - GEN
T1 - Predicting Cardiac Complications of Myocardial Infarction Patients Using Machine Learning
AU - Baidya, Shriyansh
AU - Gupta, Vibhuti
N1 - Publisher Copyright:
© 2024 IEEE.
PY - 2024
Y1 - 2024
N2 - In the United States, heart disease is the leading cause of death, killing about 695,000 people each year. Myocardial infarction (MI) is a cardiac complication which occurs when blood flow to a portion of the heart decreases or halts, leading to damage in the heart muscle. Heart failure and Atrial fibrillation (AF) are closely associated with MI. Heart failure is a common complication of MI and a risk factor for AF. Machine learning (ML) and deep learning techniques have shown potential in predicting cardiovascular conditions. However, developing a simplified predictive model, along with a thorough feature analysis, is challenging due to various factors, including lifestyle, age, family history, medical conditions, and clinical variables for cardiac complications prediction. This paper aims to develop simplified models with comprehensive feature analysis and data preprocessing for predicting cardiac complications, such as heart failure and atrial fibrillation linked with MI, using a publicly available dataset of myocardial infarction patients. This will help the students and health care professionals understand various factors responsible for cardiac complications through a simplified workflow. By prioritizing interpretability, this paper illustrates how simpler models, like decision trees and logistic regression, can provide transparent decision-making processes while still maintaining a balance with accuracy. Additionally, this paper examines how age-specific factors affect heart failure and atrial fibrillation conditions. Overall this research focuses on making machine learning accessible and interpretable. Its goal is to equip students and non-experts with practical tools to understand how ML can be applied in healthcare, particularly for the cardiac complications prediction for patients having MI.
AB - In the United States, heart disease is the leading cause of death, killing about 695,000 people each year. Myocardial infarction (MI) is a cardiac complication which occurs when blood flow to a portion of the heart decreases or halts, leading to damage in the heart muscle. Heart failure and Atrial fibrillation (AF) are closely associated with MI. Heart failure is a common complication of MI and a risk factor for AF. Machine learning (ML) and deep learning techniques have shown potential in predicting cardiovascular conditions. However, developing a simplified predictive model, along with a thorough feature analysis, is challenging due to various factors, including lifestyle, age, family history, medical conditions, and clinical variables for cardiac complications prediction. This paper aims to develop simplified models with comprehensive feature analysis and data preprocessing for predicting cardiac complications, such as heart failure and atrial fibrillation linked with MI, using a publicly available dataset of myocardial infarction patients. This will help the students and health care professionals understand various factors responsible for cardiac complications through a simplified workflow. By prioritizing interpretability, this paper illustrates how simpler models, like decision trees and logistic regression, can provide transparent decision-making processes while still maintaining a balance with accuracy. Additionally, this paper examines how age-specific factors affect heart failure and atrial fibrillation conditions. Overall this research focuses on making machine learning accessible and interpretable. Its goal is to equip students and non-experts with practical tools to understand how ML can be applied in healthcare, particularly for the cardiac complications prediction for patients having MI.
KW - health
KW - heart
KW - machine learning
KW - myocardial infarction
UR - https://www.scopus.com/pages/publications/85218010389
UR - https://www.scopus.com/inward/citedby.url?scp=85218010389&partnerID=8YFLogxK
U2 - 10.1109/BigData62323.2024.10826091
DO - 10.1109/BigData62323.2024.10826091
M3 - Conference contribution
AN - SCOPUS:85218010389
T3 - Proceedings - 2024 IEEE International Conference on Big Data, BigData 2024
SP - 7454
EP - 7462
BT - Proceedings - 2024 IEEE International Conference on Big Data, BigData 2024
A2 - Ding, Wei
A2 - Lu, Chang-Tien
A2 - Wang, Fusheng
A2 - Di, Liping
A2 - Wu, Kesheng
A2 - Huan, Jun
A2 - Nambiar, Raghu
A2 - Li, Jundong
A2 - Ilievski, Filip
A2 - Baeza-Yates, Ricardo
A2 - Hu, Xiaohua
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2024 IEEE International Conference on Big Data, BigData 2024
Y2 - 15 December 2024 through 18 December 2024
ER -