Predicting the protein half-life in tissue from its cellular properties

Mahbubur Rahman, Rovshan Sadygov

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Protein half-life is an important feature of protein homeostasis (proteostasis). The increasing number of in vivo and in vitro studies using high throughput proteomics provide estimates of the protein half-lives in tissues and cells. However, protein half-lives in cells and tissues are different. Due to the resource requirements for researching tissues, more data is available from cellular studies than tissues. We have designed a multivariate linear model for predicting protein half-life in tissue from its cellular properties. Inputs to the model are cellular halflife, abundance, intrinsically disordered sequences, and transcriptional and translational rates. Before the modeling, we determined substructures in the data using the relative distance from the regression line of the protein half-lives in tissues and cells, identifying three separate clusters. The model was trained on and applied to predict protein half-lives from murine liver, brain and heart tissues. In each tissue type we observed similar prediction patterns of protein half-lives. We found that the model provides the best results when there is a strong correlation between tissue and cell culture protein half-lives. Additionally, we clustered the protein half-lives to determine variations in correlation coefficients between the protein half-lives in the tissue versus in cell culture. The clusters identify strongly and weakly correlated protein half-lives, further improves the overall prediction and identifies sub groupings which exhibit specific characteristics. The model described herein, is generalizable to other data sets and has been implemented in a freely available R code.

Original languageEnglish (US)
Article numbere0180428
JournalPLoS One
Volume12
Issue number7
DOIs
StatePublished - Jul 1 2017

Fingerprint

half life
Half-Life
Tissue
Proteins
proteins
Cell culture
tissues
cell culture
Cell Culture Techniques
Tissue culture
prediction
cells
in vitro studies
Liver
Proteomics
proteomics
tissue culture
Linear Models
Brain
homeostasis

ASJC Scopus subject areas

  • Medicine(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)

Cite this

Predicting the protein half-life in tissue from its cellular properties. / Rahman, Mahbubur; Sadygov, Rovshan.

In: PLoS One, Vol. 12, No. 7, e0180428, 01.07.2017.

Research output: Contribution to journalArticle

@article{b6bc100b561e450484a86e4f3f3c2de3,
title = "Predicting the protein half-life in tissue from its cellular properties",
abstract = "Protein half-life is an important feature of protein homeostasis (proteostasis). The increasing number of in vivo and in vitro studies using high throughput proteomics provide estimates of the protein half-lives in tissues and cells. However, protein half-lives in cells and tissues are different. Due to the resource requirements for researching tissues, more data is available from cellular studies than tissues. We have designed a multivariate linear model for predicting protein half-life in tissue from its cellular properties. Inputs to the model are cellular halflife, abundance, intrinsically disordered sequences, and transcriptional and translational rates. Before the modeling, we determined substructures in the data using the relative distance from the regression line of the protein half-lives in tissues and cells, identifying three separate clusters. The model was trained on and applied to predict protein half-lives from murine liver, brain and heart tissues. In each tissue type we observed similar prediction patterns of protein half-lives. We found that the model provides the best results when there is a strong correlation between tissue and cell culture protein half-lives. Additionally, we clustered the protein half-lives to determine variations in correlation coefficients between the protein half-lives in the tissue versus in cell culture. The clusters identify strongly and weakly correlated protein half-lives, further improves the overall prediction and identifies sub groupings which exhibit specific characteristics. The model described herein, is generalizable to other data sets and has been implemented in a freely available R code.",
author = "Mahbubur Rahman and Rovshan Sadygov",
year = "2017",
month = "7",
day = "1",
doi = "10.1371/journal.pone.0180428",
language = "English (US)",
volume = "12",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "7",

}

TY - JOUR

T1 - Predicting the protein half-life in tissue from its cellular properties

AU - Rahman, Mahbubur

AU - Sadygov, Rovshan

PY - 2017/7/1

Y1 - 2017/7/1

N2 - Protein half-life is an important feature of protein homeostasis (proteostasis). The increasing number of in vivo and in vitro studies using high throughput proteomics provide estimates of the protein half-lives in tissues and cells. However, protein half-lives in cells and tissues are different. Due to the resource requirements for researching tissues, more data is available from cellular studies than tissues. We have designed a multivariate linear model for predicting protein half-life in tissue from its cellular properties. Inputs to the model are cellular halflife, abundance, intrinsically disordered sequences, and transcriptional and translational rates. Before the modeling, we determined substructures in the data using the relative distance from the regression line of the protein half-lives in tissues and cells, identifying three separate clusters. The model was trained on and applied to predict protein half-lives from murine liver, brain and heart tissues. In each tissue type we observed similar prediction patterns of protein half-lives. We found that the model provides the best results when there is a strong correlation between tissue and cell culture protein half-lives. Additionally, we clustered the protein half-lives to determine variations in correlation coefficients between the protein half-lives in the tissue versus in cell culture. The clusters identify strongly and weakly correlated protein half-lives, further improves the overall prediction and identifies sub groupings which exhibit specific characteristics. The model described herein, is generalizable to other data sets and has been implemented in a freely available R code.

AB - Protein half-life is an important feature of protein homeostasis (proteostasis). The increasing number of in vivo and in vitro studies using high throughput proteomics provide estimates of the protein half-lives in tissues and cells. However, protein half-lives in cells and tissues are different. Due to the resource requirements for researching tissues, more data is available from cellular studies than tissues. We have designed a multivariate linear model for predicting protein half-life in tissue from its cellular properties. Inputs to the model are cellular halflife, abundance, intrinsically disordered sequences, and transcriptional and translational rates. Before the modeling, we determined substructures in the data using the relative distance from the regression line of the protein half-lives in tissues and cells, identifying three separate clusters. The model was trained on and applied to predict protein half-lives from murine liver, brain and heart tissues. In each tissue type we observed similar prediction patterns of protein half-lives. We found that the model provides the best results when there is a strong correlation between tissue and cell culture protein half-lives. Additionally, we clustered the protein half-lives to determine variations in correlation coefficients between the protein half-lives in the tissue versus in cell culture. The clusters identify strongly and weakly correlated protein half-lives, further improves the overall prediction and identifies sub groupings which exhibit specific characteristics. The model described herein, is generalizable to other data sets and has been implemented in a freely available R code.

UR - http://www.scopus.com/inward/record.url?scp=85025092603&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85025092603&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0180428

DO - 10.1371/journal.pone.0180428

M3 - Article

VL - 12

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 7

M1 - e0180428

ER -