Purification and partial characterization of a cytotonic enterotoxin produced by Aeromonas hydrophila

A. K. Chopra, C. W. Houston

Research output: Contribution to journalArticlepeer-review

27 Scopus citations


This report describes the purification and partial characterization of a cytotonic enterotoxin produced by a human diarrheal isolate (SSU) of Aeromonas hydrophila. The extracellular enterotoxin was purified by (NH4)2SO4 precipitation, hydrophobic column chromatography, and chromatofocusing. The highly purified enterotoxin exhibited a molecular mass of 44 kDa and an isoelectric point in the range of 4.3-5.5 as determined by chromatofocusing. Western blot analysis using Aeromonas anti-enterotoxin revealed a single band at 44 kDa; however, cholera antitoxin failed to detect the enterotoxin antigen. This non-cholera toxin cross-reactive (non-CTC) enterotoxin was biologically active in vivo as determined by rabbit ligated ileal loop and rabbit skin vascular permeability assays. Biological activity also was expressed in vitro by this toxin as measured by the elongation of Chinese hamster ovary (CHO) cells. The enterotoxic activity associated with this molecule was neutralized completely by homologous antibodies but not by cholera antitoxin. The purified toxin preparation was free of hemolytic and cytotoxic activities as determined by its inability to lyse rabbit red blood cells or damage CHO cells, respectively. Furthermore, this toxin induced the elevation of cAMP in CHO cells suggesting thereby that the mechanism of action of Aeromonas non-CTC enterotoxin may be similar to heat-labile enterotoxins of Escherichia coli and Vibrio cholerae.

Original languageEnglish (US)
Pages (from-to)719-727
Number of pages9
JournalCanadian Journal of Microbiology
Issue number7
StatePublished - 1989

ASJC Scopus subject areas

  • Microbiology
  • Immunology
  • Applied Microbiology and Biotechnology
  • Molecular Biology
  • Genetics


Dive into the research topics of 'Purification and partial characterization of a cytotonic enterotoxin produced by Aeromonas hydrophila'. Together they form a unique fingerprint.

Cite this