TY - JOUR
T1 - Quantitative assessment of microbicide-induced injury in the ovine vaginal epithelium using confocal microendoscopy
AU - Vargas, Gracie
AU - Patrikeev, Igor
AU - Wei, Jingna
AU - Bell, Brent
AU - Vincent, Kathleen
AU - Bourne, Nigel
AU - Motamedi, Massoud
N1 - Funding Information:
We thank Dr. Alai Tan, Department of Statistics, University of Texas Medical Branch for statistical consultation.Sources of financial support (including grant numbers): this work was supported in part by the NIAID (R21AI07606202/R33AI076062 and UC7AI070083) and R01CA127429. Reprints, proofs or correspondence. Mailing address: 301 University Blvd., Rt. 0456, The University of Texas Medical Branch, Galveston, TX 77555. Phone: (409)772-8363. Fax: (409) 772-0751. E-mail: http://[email protected].
PY - 2012/2/29
Y1 - 2012/2/29
N2 - Background: The development of safe topical microbicides that can preserve the integrity of cervicovaginal tract epithelial barrier is of great interest as this may minimize the potential for increased susceptibility to STI infections. High resolution imaging to assess epithelial integrity in a noninvasive manner could be a valuable tool for preclinical testing of candidate topical agents.Methods: A quantitative approach using confocal fluorescence microendoscopy (CFM) for assessment of microbicide-induced injury to the vaginal epithelium was developed. Sheep were treated intravaginally with one of five agents in solution (PBS; 0.02% benzalkonium chloride (BZK); 0.2% BZK) or gel formulation (hydroxyethyl cellulose (HEC); Gynol II nonoxynol-9 gel (N-9)). After 24 hours the vaginal tract was removed, labeled with propidium iodide (PI), imaged, then fixed for histology. An automated image scoring algorithm was developed for quantitative assessment of injury and applied to the data set. Image-based findings were validated with histological visual gradings that describe degree of injury and measurement of epithelial thickness.Results: Distinct differences in PI staining were detected following BZK and N-9 treatment. Images from controls had uniformly distributed nuclei with defined borders, while those after BZK or N-9 showed heavily stained and disrupted nuclei, which increased in proportion to injury detected on histology. The confocal scoring system revealed statistically significant scores for each agent versus PBS controls with the exception of HEC and were consistent with histology scores of injury.Conclusions: Confocal microendoscopy provides a sensitive, objective, and quantitative approach for non-invasive assessment of vaginal epithelial integrity and could serve as a tool for real-time safety evaluation of emerging intravaginal topical agents.
AB - Background: The development of safe topical microbicides that can preserve the integrity of cervicovaginal tract epithelial barrier is of great interest as this may minimize the potential for increased susceptibility to STI infections. High resolution imaging to assess epithelial integrity in a noninvasive manner could be a valuable tool for preclinical testing of candidate topical agents.Methods: A quantitative approach using confocal fluorescence microendoscopy (CFM) for assessment of microbicide-induced injury to the vaginal epithelium was developed. Sheep were treated intravaginally with one of five agents in solution (PBS; 0.02% benzalkonium chloride (BZK); 0.2% BZK) or gel formulation (hydroxyethyl cellulose (HEC); Gynol II nonoxynol-9 gel (N-9)). After 24 hours the vaginal tract was removed, labeled with propidium iodide (PI), imaged, then fixed for histology. An automated image scoring algorithm was developed for quantitative assessment of injury and applied to the data set. Image-based findings were validated with histological visual gradings that describe degree of injury and measurement of epithelial thickness.Results: Distinct differences in PI staining were detected following BZK and N-9 treatment. Images from controls had uniformly distributed nuclei with defined borders, while those after BZK or N-9 showed heavily stained and disrupted nuclei, which increased in proportion to injury detected on histology. The confocal scoring system revealed statistically significant scores for each agent versus PBS controls with the exception of HEC and were consistent with histology scores of injury.Conclusions: Confocal microendoscopy provides a sensitive, objective, and quantitative approach for non-invasive assessment of vaginal epithelial integrity and could serve as a tool for real-time safety evaluation of emerging intravaginal topical agents.
KW - Benzalkonium chloride
KW - Confocal endomicroscopy
KW - Epithelial disruption
KW - Imaging
KW - Microbicides
KW - Nonoxynol-9
UR - http://www.scopus.com/inward/record.url?scp=84857465755&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84857465755&partnerID=8YFLogxK
U2 - 10.1186/1471-2334-12-48
DO - 10.1186/1471-2334-12-48
M3 - Article
C2 - 22375797
AN - SCOPUS:84857465755
SN - 1471-2334
VL - 12
JO - BMC Infectious Diseases
JF - BMC Infectious Diseases
M1 - 48
ER -