Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR) RNAs and their associated effector (Cas) enzymes are being developed into promising therapeutics to treat disease. However, CRISPR-Cas enzymes might produce unwanted gene editing or dangerous side effects. Drug-like molecules that can inactivate CRISPR-Cas enzymes could help facilitate safer therapeutic development. Based on the requirement of guide RNA and target DNA interaction by Cas enzymes, we rationally designed small nucleic acid-based inhibitors (SNuBs) of Streptococcus pyogenes (Sp) Cas9. Inhibitors were initially designed as 2′-O-methyl-modified oligonucleotides that bound the CRISPR RNA guide sequence (anti-guide) or repeat sequence (anti-tracr), or DNA oligonucleotides that bound the protospacer adjacent motif (PAM)-interaction domain (anti-PAM) of SpCas9. Coupling anti-PAM and anti-tracr modules together was synergistic and resulted in high binding affinity and efficient inhibition of Cas9 DNA cleavage activity. Incorporating 2′F-RNA and locked nucleic acid nucleotides into the anti-tracr module resulted in greater inhibition as well as dose-dependent suppression of gene editing in human cells. CRISPR SNuBs provide a platform for rational design of CRISPR-Cas enzyme inhibitors that should translate to other CRISPR effector enzymes and enable better control over CRISPR-based applications.
Original language | English (US) |
---|---|
Pages (from-to) | 136-147 |
Number of pages | 12 |
Journal | Nucleic Acid Therapeutics |
Volume | 29 |
Issue number | 3 |
DOIs | |
State | Published - Jun 2019 |
Externally published | Yes |
Keywords
- anti-CRISPR
- CRISPR-Cas9
- gene editing
- inhibition
- nucleic acid
- RNA
ASJC Scopus subject areas
- Biochemistry
- Molecular Medicine
- Molecular Biology
- Genetics
- Drug Discovery