Real-time, noninvasive optoacoustic monitoring of nanoparticle-mediated photothermal therapy of tumors

R. O. Esenaliev, Y. Y. Petrov, I. Cicenaite, O. V. Chumakova, I. Y. Petrova, I. Patrikeev, A. Liopo

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

We proposed and have been developing real-time, noninvasive monitoring of blood oxygenation, total hemoglobin concentration, and thermotherapy including hyperthermia, coagulation, and cryotherapy. In this paper we propose to use the optoacoustic technique for monitoring of nanoparticle-mediated photothermal therapy (NPT) of tumors. NPT is based on heating exogenous strongly-absorbing nanoparticles selectively delivered in tumors. Real-time monitoring of NPT is necessary for precise tumor therapy with minimal damage to normal tissues. In this study we injected PEGylated and non-PEGylated carbon nanoparticles in nude mice bearing human tumors (5-15 mm) and irradiated the tumors for 10 minutes with nanosecond Nd:YAG laser pulses which produced both thermal damage to the tumors and optoacoustic signals for monitoring NPT in real time. Irradiation of tumors was performed during or after (3 or 24 hours) nanoparticle injection. Amplitude and temporal parameters of optoacoustic signals (measured with a custom-made wide-band optoacoustic probe) correlated well with nanoparticle injection, temperature rise in tumors, and tumor coagulation. Substantial thermal damage in large areas of the tumors was produced when optimal irradiation parameters were used. Monte Carlo modeling of light distribution in tumors and optoacoustic theory were applied to study kinetics of nanoparticle concentration in the tumors. Our results demonstrated that the optoacoustic technique can be used for real-time monitoring of NTP and provide precise tumor therapy with minimal damage to normal tissues.

Original languageEnglish (US)
Title of host publicationPhotons Plus Ultrasound
Subtitle of host publicationImaging and Sensing 2007: The Eighth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics
DOIs
StatePublished - Apr 30 2007
EventPhotons Plus Ultrasound: Imaging and Sensing 2007: The Eighth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics - San Jose, CA, United States
Duration: Jan 21 2007Jan 24 2007

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume6437
ISSN (Print)1605-7422

Other

OtherPhotons Plus Ultrasound: Imaging and Sensing 2007: The Eighth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics
CountryUnited States
CitySan Jose, CA
Period1/21/071/24/07

Keywords

  • Nanoparticle
  • Optoacoustics
  • Thermotherapy
  • Tumor

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging

Fingerprint Dive into the research topics of 'Real-time, noninvasive optoacoustic monitoring of nanoparticle-mediated photothermal therapy of tumors'. Together they form a unique fingerprint.

  • Cite this

    Esenaliev, R. O., Petrov, Y. Y., Cicenaite, I., Chumakova, O. V., Petrova, I. Y., Patrikeev, I., & Liopo, A. (2007). Real-time, noninvasive optoacoustic monitoring of nanoparticle-mediated photothermal therapy of tumors. In Photons Plus Ultrasound: Imaging and Sensing 2007: The Eighth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics [64370Q] (Progress in Biomedical Optics and Imaging - Proceedings of SPIE; Vol. 6437). https://doi.org/10.1117/12.714302