Receptor subtype mediating the adrenergic sensitivity of pain behavior and ectopic discharges in neuropathic Lewis rats

Doo Hyun Lee, Xianzeng Liu, Hyun Taek Kim, Kyungsoon Chung, Jin Chung

Research output: Contribution to journalArticle

77 Citations (Scopus)

Abstract

We attempted to identify the subtype of α-adrenergic receptor (α-AR) that is responsible for the sympathetic (adrenergic) dependency of neuropathic pain in the segmental spinal injury (SSI) model in the Lewis strain of rat. This model was chosen because our previous study showed that pain behaviors in this condition are particularly sensitive to systemic injection of phentolamine (PTL), a general α-AR blocker. We examined the effects of specific α1- and α2-AR blockers on 1) behavioral signs of mechanical allodynia, 2) ectopic discharges recorded in the in vivo condition, and 3) ectopic discharges recorded in an in vitro setup. One week after tight ligation of the L5 and L6 spinal nerves, mechanical thresholds of the paw for foot withdrawals were drastically lowered; we interpreted this change as a sign of mechanical allodynia. Signs of mechanical allodynia were significantly relieved by a systemic injection of PTL (a mixed α1- and α2-AR antagonist) or terazosin (TRZ, an α1-AR antagonist) but not by various α2-AR antagonists (idazoxan, rauwolscine, or yohimbine), suggesting that the α1-AR is in part the mediator of the signs of mechanical allodynia. Ongoing ectopic discharges were recorded from injured afferents in fascicles of the L5 dorsal root of the neuropathic rat with an in vivo recording setup. Ongoing discharge rate was significantly reduced after intraperitoneal injection of PTL or TRZ but not by idazoxan. In addition, by using an in vitro recording setup, spontaneous activity was recorded from teased dorsal root fibers in a segment in which the spinal nerve was previously ligated. Application of epinephrine to the perfusion bath enhanced ongoing discharges. This evoked activity was blocked by pretreatment with TRZ but not with idazoxan. This study demonstrated that both behavioral signs of mechanical allodynia and ectopic discharges of injured afferents in the Lewis neuropathic rat are in part mediated by mechanisms involving α1-ARs. These results suggest that the sympathetic dependency of neuropathic pain in the Lewis strain of the rat is mediated by the α1 subtype of AR.

Original languageEnglish (US)
Pages (from-to)2226-2233
Number of pages8
JournalJournal of Neurophysiology
Volume81
Issue number5
StatePublished - 1999

Fingerprint

Hyperalgesia
Adrenergic Agents
Idazoxan
Phentolamine
Pain
Spinal Nerves
Terazosin
Yohimbine
Spinal Nerve Roots
Neuralgia
Spinal Injuries
Injections
Intraperitoneal Injections
Baths
Adrenergic Receptors
Epinephrine
Ligation
Foot
Perfusion
Amberlite XAD-2 resin

ASJC Scopus subject areas

  • Physiology
  • Neuroscience(all)

Cite this

Receptor subtype mediating the adrenergic sensitivity of pain behavior and ectopic discharges in neuropathic Lewis rats. / Lee, Doo Hyun; Liu, Xianzeng; Kim, Hyun Taek; Chung, Kyungsoon; Chung, Jin.

In: Journal of Neurophysiology, Vol. 81, No. 5, 1999, p. 2226-2233.

Research output: Contribution to journalArticle

Lee, Doo Hyun ; Liu, Xianzeng ; Kim, Hyun Taek ; Chung, Kyungsoon ; Chung, Jin. / Receptor subtype mediating the adrenergic sensitivity of pain behavior and ectopic discharges in neuropathic Lewis rats. In: Journal of Neurophysiology. 1999 ; Vol. 81, No. 5. pp. 2226-2233.
@article{bce876a03e4940018e283b2b944fb2ce,
title = "Receptor subtype mediating the adrenergic sensitivity of pain behavior and ectopic discharges in neuropathic Lewis rats",
abstract = "We attempted to identify the subtype of α-adrenergic receptor (α-AR) that is responsible for the sympathetic (adrenergic) dependency of neuropathic pain in the segmental spinal injury (SSI) model in the Lewis strain of rat. This model was chosen because our previous study showed that pain behaviors in this condition are particularly sensitive to systemic injection of phentolamine (PTL), a general α-AR blocker. We examined the effects of specific α1- and α2-AR blockers on 1) behavioral signs of mechanical allodynia, 2) ectopic discharges recorded in the in vivo condition, and 3) ectopic discharges recorded in an in vitro setup. One week after tight ligation of the L5 and L6 spinal nerves, mechanical thresholds of the paw for foot withdrawals were drastically lowered; we interpreted this change as a sign of mechanical allodynia. Signs of mechanical allodynia were significantly relieved by a systemic injection of PTL (a mixed α1- and α2-AR antagonist) or terazosin (TRZ, an α1-AR antagonist) but not by various α2-AR antagonists (idazoxan, rauwolscine, or yohimbine), suggesting that the α1-AR is in part the mediator of the signs of mechanical allodynia. Ongoing ectopic discharges were recorded from injured afferents in fascicles of the L5 dorsal root of the neuropathic rat with an in vivo recording setup. Ongoing discharge rate was significantly reduced after intraperitoneal injection of PTL or TRZ but not by idazoxan. In addition, by using an in vitro recording setup, spontaneous activity was recorded from teased dorsal root fibers in a segment in which the spinal nerve was previously ligated. Application of epinephrine to the perfusion bath enhanced ongoing discharges. This evoked activity was blocked by pretreatment with TRZ but not with idazoxan. This study demonstrated that both behavioral signs of mechanical allodynia and ectopic discharges of injured afferents in the Lewis neuropathic rat are in part mediated by mechanisms involving α1-ARs. These results suggest that the sympathetic dependency of neuropathic pain in the Lewis strain of the rat is mediated by the α1 subtype of AR.",
author = "Lee, {Doo Hyun} and Xianzeng Liu and Kim, {Hyun Taek} and Kyungsoon Chung and Jin Chung",
year = "1999",
language = "English (US)",
volume = "81",
pages = "2226--2233",
journal = "Journal of Neurophysiology",
issn = "0022-3077",
publisher = "American Physiological Society",
number = "5",

}

TY - JOUR

T1 - Receptor subtype mediating the adrenergic sensitivity of pain behavior and ectopic discharges in neuropathic Lewis rats

AU - Lee, Doo Hyun

AU - Liu, Xianzeng

AU - Kim, Hyun Taek

AU - Chung, Kyungsoon

AU - Chung, Jin

PY - 1999

Y1 - 1999

N2 - We attempted to identify the subtype of α-adrenergic receptor (α-AR) that is responsible for the sympathetic (adrenergic) dependency of neuropathic pain in the segmental spinal injury (SSI) model in the Lewis strain of rat. This model was chosen because our previous study showed that pain behaviors in this condition are particularly sensitive to systemic injection of phentolamine (PTL), a general α-AR blocker. We examined the effects of specific α1- and α2-AR blockers on 1) behavioral signs of mechanical allodynia, 2) ectopic discharges recorded in the in vivo condition, and 3) ectopic discharges recorded in an in vitro setup. One week after tight ligation of the L5 and L6 spinal nerves, mechanical thresholds of the paw for foot withdrawals were drastically lowered; we interpreted this change as a sign of mechanical allodynia. Signs of mechanical allodynia were significantly relieved by a systemic injection of PTL (a mixed α1- and α2-AR antagonist) or terazosin (TRZ, an α1-AR antagonist) but not by various α2-AR antagonists (idazoxan, rauwolscine, or yohimbine), suggesting that the α1-AR is in part the mediator of the signs of mechanical allodynia. Ongoing ectopic discharges were recorded from injured afferents in fascicles of the L5 dorsal root of the neuropathic rat with an in vivo recording setup. Ongoing discharge rate was significantly reduced after intraperitoneal injection of PTL or TRZ but not by idazoxan. In addition, by using an in vitro recording setup, spontaneous activity was recorded from teased dorsal root fibers in a segment in which the spinal nerve was previously ligated. Application of epinephrine to the perfusion bath enhanced ongoing discharges. This evoked activity was blocked by pretreatment with TRZ but not with idazoxan. This study demonstrated that both behavioral signs of mechanical allodynia and ectopic discharges of injured afferents in the Lewis neuropathic rat are in part mediated by mechanisms involving α1-ARs. These results suggest that the sympathetic dependency of neuropathic pain in the Lewis strain of the rat is mediated by the α1 subtype of AR.

AB - We attempted to identify the subtype of α-adrenergic receptor (α-AR) that is responsible for the sympathetic (adrenergic) dependency of neuropathic pain in the segmental spinal injury (SSI) model in the Lewis strain of rat. This model was chosen because our previous study showed that pain behaviors in this condition are particularly sensitive to systemic injection of phentolamine (PTL), a general α-AR blocker. We examined the effects of specific α1- and α2-AR blockers on 1) behavioral signs of mechanical allodynia, 2) ectopic discharges recorded in the in vivo condition, and 3) ectopic discharges recorded in an in vitro setup. One week after tight ligation of the L5 and L6 spinal nerves, mechanical thresholds of the paw for foot withdrawals were drastically lowered; we interpreted this change as a sign of mechanical allodynia. Signs of mechanical allodynia were significantly relieved by a systemic injection of PTL (a mixed α1- and α2-AR antagonist) or terazosin (TRZ, an α1-AR antagonist) but not by various α2-AR antagonists (idazoxan, rauwolscine, or yohimbine), suggesting that the α1-AR is in part the mediator of the signs of mechanical allodynia. Ongoing ectopic discharges were recorded from injured afferents in fascicles of the L5 dorsal root of the neuropathic rat with an in vivo recording setup. Ongoing discharge rate was significantly reduced after intraperitoneal injection of PTL or TRZ but not by idazoxan. In addition, by using an in vitro recording setup, spontaneous activity was recorded from teased dorsal root fibers in a segment in which the spinal nerve was previously ligated. Application of epinephrine to the perfusion bath enhanced ongoing discharges. This evoked activity was blocked by pretreatment with TRZ but not with idazoxan. This study demonstrated that both behavioral signs of mechanical allodynia and ectopic discharges of injured afferents in the Lewis neuropathic rat are in part mediated by mechanisms involving α1-ARs. These results suggest that the sympathetic dependency of neuropathic pain in the Lewis strain of the rat is mediated by the α1 subtype of AR.

UR - http://www.scopus.com/inward/record.url?scp=0012950921&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0012950921&partnerID=8YFLogxK

M3 - Article

C2 - 10322061

AN - SCOPUS:0012950921

VL - 81

SP - 2226

EP - 2233

JO - Journal of Neurophysiology

JF - Journal of Neurophysiology

SN - 0022-3077

IS - 5

ER -