Recognition of template-primer and gapped DNA substrates by the human DNA polymerase β

Surendran Rajendran, Maria J. Jezewska, Wlodzimierz Bujalowski

Research output: Contribution to journalArticle

27 Citations (Scopus)

Abstract

Interactions between human DNA polymerase β and the template-primer, as well as gapped DNA substrates, have been studied using quantitative fluorescence titration and analytical ultracentrifugation techniques. In solution, human pol β binds template-primer DNA substrates with a stoichiometry much higher than predicted on the basis of the crystallographic structure of the polymerase-DNA complex. The obtained stoichiometries can be understood in the context of the polymerase affinity for the dsDNA and the two ssDNA binding modes, the (pol β)16 and (pol β)5 binding modes, which differ by the number of nucleotide residues occluded by the protein in the complex. The analysis of polymerase binding to different template-primer substrates has been performed using the statistical thermodynamic model which accounts for the existence of different ssDNA binding modes and has allowed us to extract intrinsic spectroscopic and binding parameters. The data reveal that the small 8 kDa domain of the enzyme can engage the dsDNA in interactions, downstream from the primer, in both (pol β)16 and (pol β)5 binding modes. The affinity, as well as the stoichiometry of human pol β binding to the gapped DNAs is not affected by the decreasing size of the ssDNA gap, indicating that the enzyme recognizes the ssDNA gaps of different sizes with very similar efficiency. On the basis of the obtained results we propose a plausible model for the gapped DNA recognition by human pol β. The enzyme binds the ss/dsDNA junction of the gap, using its 31 kDa domain, with slight preference over the dsDNA. Binding only to the junction, but not to the dsDNA, induces an allosteric conformational transition of the enzyme and the entire enzyme-DNA complex which results in binding of the 8 kDa domain with the dsDNA. This, in turn, leads to the significant amplification of the enzyme affinity for the gap over the surrounding dsDNA, independent of the gap size. The presence of the 5′-terminal phosphate, downstream from the primer, has little effect on the affinity, but profoundly affects the ssDNA conformation in the complex. The significance of these results for the mechanistic model of the functioning of human pol β is discussed.

Original languageEnglish (US)
Pages (from-to)477-500
Number of pages24
JournalJournal of Molecular Biology
Volume308
Issue number3
DOIs
StatePublished - May 4 2001

Fingerprint

DNA Primers
DNA-Directed DNA Polymerase
Enzymes
DNA
Gap Junctions
Ultracentrifugation
Statistical Models
Thermodynamics
Nucleotides
Fluorescence
Phosphates
Proteins

Keywords

  • DNA polymerase β
  • DNA replication and repair
  • Protein-DNA interactions
  • Quantitative fluorescence titrations

ASJC Scopus subject areas

  • Virology

Cite this

Recognition of template-primer and gapped DNA substrates by the human DNA polymerase β. / Rajendran, Surendran; Jezewska, Maria J.; Bujalowski, Wlodzimierz.

In: Journal of Molecular Biology, Vol. 308, No. 3, 04.05.2001, p. 477-500.

Research output: Contribution to journalArticle

@article{654fc939f6bf43d2b16c90fb239d5da0,
title = "Recognition of template-primer and gapped DNA substrates by the human DNA polymerase β",
abstract = "Interactions between human DNA polymerase β and the template-primer, as well as gapped DNA substrates, have been studied using quantitative fluorescence titration and analytical ultracentrifugation techniques. In solution, human pol β binds template-primer DNA substrates with a stoichiometry much higher than predicted on the basis of the crystallographic structure of the polymerase-DNA complex. The obtained stoichiometries can be understood in the context of the polymerase affinity for the dsDNA and the two ssDNA binding modes, the (pol β)16 and (pol β)5 binding modes, which differ by the number of nucleotide residues occluded by the protein in the complex. The analysis of polymerase binding to different template-primer substrates has been performed using the statistical thermodynamic model which accounts for the existence of different ssDNA binding modes and has allowed us to extract intrinsic spectroscopic and binding parameters. The data reveal that the small 8 kDa domain of the enzyme can engage the dsDNA in interactions, downstream from the primer, in both (pol β)16 and (pol β)5 binding modes. The affinity, as well as the stoichiometry of human pol β binding to the gapped DNAs is not affected by the decreasing size of the ssDNA gap, indicating that the enzyme recognizes the ssDNA gaps of different sizes with very similar efficiency. On the basis of the obtained results we propose a plausible model for the gapped DNA recognition by human pol β. The enzyme binds the ss/dsDNA junction of the gap, using its 31 kDa domain, with slight preference over the dsDNA. Binding only to the junction, but not to the dsDNA, induces an allosteric conformational transition of the enzyme and the entire enzyme-DNA complex which results in binding of the 8 kDa domain with the dsDNA. This, in turn, leads to the significant amplification of the enzyme affinity for the gap over the surrounding dsDNA, independent of the gap size. The presence of the 5′-terminal phosphate, downstream from the primer, has little effect on the affinity, but profoundly affects the ssDNA conformation in the complex. The significance of these results for the mechanistic model of the functioning of human pol β is discussed.",
keywords = "DNA polymerase β, DNA replication and repair, Protein-DNA interactions, Quantitative fluorescence titrations",
author = "Surendran Rajendran and Jezewska, {Maria J.} and Wlodzimierz Bujalowski",
year = "2001",
month = "5",
day = "4",
doi = "10.1006/jmbi.2001.4571",
language = "English (US)",
volume = "308",
pages = "477--500",
journal = "Journal of Molecular Biology",
issn = "0022-2836",
publisher = "Academic Press Inc.",
number = "3",

}

TY - JOUR

T1 - Recognition of template-primer and gapped DNA substrates by the human DNA polymerase β

AU - Rajendran, Surendran

AU - Jezewska, Maria J.

AU - Bujalowski, Wlodzimierz

PY - 2001/5/4

Y1 - 2001/5/4

N2 - Interactions between human DNA polymerase β and the template-primer, as well as gapped DNA substrates, have been studied using quantitative fluorescence titration and analytical ultracentrifugation techniques. In solution, human pol β binds template-primer DNA substrates with a stoichiometry much higher than predicted on the basis of the crystallographic structure of the polymerase-DNA complex. The obtained stoichiometries can be understood in the context of the polymerase affinity for the dsDNA and the two ssDNA binding modes, the (pol β)16 and (pol β)5 binding modes, which differ by the number of nucleotide residues occluded by the protein in the complex. The analysis of polymerase binding to different template-primer substrates has been performed using the statistical thermodynamic model which accounts for the existence of different ssDNA binding modes and has allowed us to extract intrinsic spectroscopic and binding parameters. The data reveal that the small 8 kDa domain of the enzyme can engage the dsDNA in interactions, downstream from the primer, in both (pol β)16 and (pol β)5 binding modes. The affinity, as well as the stoichiometry of human pol β binding to the gapped DNAs is not affected by the decreasing size of the ssDNA gap, indicating that the enzyme recognizes the ssDNA gaps of different sizes with very similar efficiency. On the basis of the obtained results we propose a plausible model for the gapped DNA recognition by human pol β. The enzyme binds the ss/dsDNA junction of the gap, using its 31 kDa domain, with slight preference over the dsDNA. Binding only to the junction, but not to the dsDNA, induces an allosteric conformational transition of the enzyme and the entire enzyme-DNA complex which results in binding of the 8 kDa domain with the dsDNA. This, in turn, leads to the significant amplification of the enzyme affinity for the gap over the surrounding dsDNA, independent of the gap size. The presence of the 5′-terminal phosphate, downstream from the primer, has little effect on the affinity, but profoundly affects the ssDNA conformation in the complex. The significance of these results for the mechanistic model of the functioning of human pol β is discussed.

AB - Interactions between human DNA polymerase β and the template-primer, as well as gapped DNA substrates, have been studied using quantitative fluorescence titration and analytical ultracentrifugation techniques. In solution, human pol β binds template-primer DNA substrates with a stoichiometry much higher than predicted on the basis of the crystallographic structure of the polymerase-DNA complex. The obtained stoichiometries can be understood in the context of the polymerase affinity for the dsDNA and the two ssDNA binding modes, the (pol β)16 and (pol β)5 binding modes, which differ by the number of nucleotide residues occluded by the protein in the complex. The analysis of polymerase binding to different template-primer substrates has been performed using the statistical thermodynamic model which accounts for the existence of different ssDNA binding modes and has allowed us to extract intrinsic spectroscopic and binding parameters. The data reveal that the small 8 kDa domain of the enzyme can engage the dsDNA in interactions, downstream from the primer, in both (pol β)16 and (pol β)5 binding modes. The affinity, as well as the stoichiometry of human pol β binding to the gapped DNAs is not affected by the decreasing size of the ssDNA gap, indicating that the enzyme recognizes the ssDNA gaps of different sizes with very similar efficiency. On the basis of the obtained results we propose a plausible model for the gapped DNA recognition by human pol β. The enzyme binds the ss/dsDNA junction of the gap, using its 31 kDa domain, with slight preference over the dsDNA. Binding only to the junction, but not to the dsDNA, induces an allosteric conformational transition of the enzyme and the entire enzyme-DNA complex which results in binding of the 8 kDa domain with the dsDNA. This, in turn, leads to the significant amplification of the enzyme affinity for the gap over the surrounding dsDNA, independent of the gap size. The presence of the 5′-terminal phosphate, downstream from the primer, has little effect on the affinity, but profoundly affects the ssDNA conformation in the complex. The significance of these results for the mechanistic model of the functioning of human pol β is discussed.

KW - DNA polymerase β

KW - DNA replication and repair

KW - Protein-DNA interactions

KW - Quantitative fluorescence titrations

UR - http://www.scopus.com/inward/record.url?scp=0035804927&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035804927&partnerID=8YFLogxK

U2 - 10.1006/jmbi.2001.4571

DO - 10.1006/jmbi.2001.4571

M3 - Article

VL - 308

SP - 477

EP - 500

JO - Journal of Molecular Biology

JF - Journal of Molecular Biology

SN - 0022-2836

IS - 3

ER -