TY - JOUR
T1 - Recombinant human activated protein C attenuates cardiovascular and microcirculatory dysfunction in acute lung injury and septic shock
AU - Maybauer, Marc O.
AU - Maybauer, Dirk M.
AU - Fraser, John F.
AU - Szabo, Csaba
AU - Westphal, Martin
AU - Kiss, Levente
AU - Horvath, Eszter M.
AU - Nakano, Yoshimitsu
AU - Herndon, David N.
AU - Traber, Lillian D.
AU - Traber, Daniel L.
N1 - Funding Information:
The present work was supported in part by grants for the following authors: grant GM066312 from the National Institutes of Health (DLT), grants 8820 and 8450 from the Shriners of North America (DLT and DNH), an industrial grant from Eli Lilly & Co Australia (JFF), and National Institutes of Health grant R01 GM060915 (CS). All other authors received no funding. None of the funding sources played any role in study design; in the collection, analysis, and interpretation of data; in the writing of the manuscript; or in the decision to submit the manuscript for publication.
PY - 2010/11/26
Y1 - 2010/11/26
N2 - Introduction: This prospective, randomized, controlled, experimental animal study looks at the effects of recombinant human activated protein C (rhAPC) on global hemodynamics and microcirculation in ovine acute lung injury (ALI) and septic shock, resulting from smoke inhalation injury.Methods: Twenty-one sheep (37 ± 2 kg) were operatively prepared for chronic study and randomly allocated to either the sham, control, or rhAPC group (n = 7 each). The control and rhAPC groups were subjected to insufflation of four sets of 12 breaths of cotton smoke followed by instillation of live Pseudomonas aeruginosa into both lung lobes, according to an established protocol. Healthy sham animals were not subjected to the injury and received only four sets of 12 breaths of room air and instillation of the vehicle (normal saline). rhAPC (24 μg/kg/hour) was intravenously administered from 1 hour post injury until the end of the 24-hour experiment. Regional microvascular blood flow was analyzed using colored microspheres. All sheep were mechanically ventilated with 100% oxygen, and fluid resuscitated with lactated Ringer's solution to maintain hematocrit at baseline levels.Results: The rhAPC-associated reduction in heart malondialdehyde (MDA) and heart 3-nitrotyrosine (a reliable indicator of tissue injury) levels occurred parallel to a significant increase in mean arterial pressure and to a significant reduction in heart rate and cardiac output compared with untreated controls that showed a typical hypotensive, hyperdynamic response to the injury (P < 0.05). In addition, rhAPC significantly attenuated the changes in microvascular blood flow to the trachea, kidney, and spleen compared with untreated controls (P < 0.05 each). Blood flow to the ileum and pancreas, however, remained similar between groups. The cerebral blood flow as measured in cerebral cortex, cerebellum, thalamus, pons, and hypothalamus, was significantly increased in untreated controls, due to a loss of cerebral autoregulation in septic shock. rhAPC stabilized cerebral blood flow at baseline levels, as in the sham group.Conclusions: We conclude that rhAPC stabilized cardiovascular functions and attenuated the changes in visceral and cerebral microcirculation in sheep suffering from ALI and septic shock by reduction of cardiac MDA and 3-nitrotyrosine.
AB - Introduction: This prospective, randomized, controlled, experimental animal study looks at the effects of recombinant human activated protein C (rhAPC) on global hemodynamics and microcirculation in ovine acute lung injury (ALI) and septic shock, resulting from smoke inhalation injury.Methods: Twenty-one sheep (37 ± 2 kg) were operatively prepared for chronic study and randomly allocated to either the sham, control, or rhAPC group (n = 7 each). The control and rhAPC groups were subjected to insufflation of four sets of 12 breaths of cotton smoke followed by instillation of live Pseudomonas aeruginosa into both lung lobes, according to an established protocol. Healthy sham animals were not subjected to the injury and received only four sets of 12 breaths of room air and instillation of the vehicle (normal saline). rhAPC (24 μg/kg/hour) was intravenously administered from 1 hour post injury until the end of the 24-hour experiment. Regional microvascular blood flow was analyzed using colored microspheres. All sheep were mechanically ventilated with 100% oxygen, and fluid resuscitated with lactated Ringer's solution to maintain hematocrit at baseline levels.Results: The rhAPC-associated reduction in heart malondialdehyde (MDA) and heart 3-nitrotyrosine (a reliable indicator of tissue injury) levels occurred parallel to a significant increase in mean arterial pressure and to a significant reduction in heart rate and cardiac output compared with untreated controls that showed a typical hypotensive, hyperdynamic response to the injury (P < 0.05). In addition, rhAPC significantly attenuated the changes in microvascular blood flow to the trachea, kidney, and spleen compared with untreated controls (P < 0.05 each). Blood flow to the ileum and pancreas, however, remained similar between groups. The cerebral blood flow as measured in cerebral cortex, cerebellum, thalamus, pons, and hypothalamus, was significantly increased in untreated controls, due to a loss of cerebral autoregulation in septic shock. rhAPC stabilized cerebral blood flow at baseline levels, as in the sham group.Conclusions: We conclude that rhAPC stabilized cardiovascular functions and attenuated the changes in visceral and cerebral microcirculation in sheep suffering from ALI and septic shock by reduction of cardiac MDA and 3-nitrotyrosine.
UR - http://www.scopus.com/inward/record.url?scp=78649319752&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78649319752&partnerID=8YFLogxK
U2 - 10.1186/cc9342
DO - 10.1186/cc9342
M3 - Article
C2 - 21110850
AN - SCOPUS:78649319752
SN - 1364-8535
VL - 14
JO - Critical Care
JF - Critical Care
IS - 6
M1 - R217
ER -