TY - JOUR
T1 - Reconstitution of TFIIH and requirement of its DNA helicase subunits, Rad3 and Rad25, in the incision step of nucleotide excision repair
AU - Sung, Patrick
AU - Guzder, Sami N.
AU - Prakash, Louise
AU - Prakash, Satya
PY - 1996
Y1 - 1996
N2 - Yeast TFIIH is composed of six subunits: Rad3, Rad25, TFB1, SSL1, p55, and p38. In addition to TFIIH, we have purified a subassembly of the factor that lacks Rad3 and Rad25 and which we refer to as TFIIHi. In the in vitro nucleotide excision repair (NER) system that consists entirely of purified proteins, we show that neither TFIIHi nor a mixture of purified Rad3 and Rad25 proteins is active in NER but that the combination of TFIIHi with Rad3 and Rad25 promotes the incision of UV-damaged DNA. These results provide the first evidence for a direct requirement of Rad3, Rad25, and of one or more of the TFIIHi subunits in the incision step of NER. The NER efficacy of TFIIH is greatly diminished or abolished upon substitution of Rad3 with the rad3 Arg- 48 mutant protein or Rad25 with the rad25 Arg-392 mutant protein, respectively, thus indicating a role of the Rad3 and Rad25 DNA helicase functions in the incision of damaged DNA. Our results further indicate that the carboxyl-terminal domain kinase (CTD) TFIIK is dispensable for the incision of damaged DNA in vitro. These studies reveal the differential requirement of Rad3 DNA helicase and CTD kinase activities in damage-specific incision versus RNA polymerase II transcription.
AB - Yeast TFIIH is composed of six subunits: Rad3, Rad25, TFB1, SSL1, p55, and p38. In addition to TFIIH, we have purified a subassembly of the factor that lacks Rad3 and Rad25 and which we refer to as TFIIHi. In the in vitro nucleotide excision repair (NER) system that consists entirely of purified proteins, we show that neither TFIIHi nor a mixture of purified Rad3 and Rad25 proteins is active in NER but that the combination of TFIIHi with Rad3 and Rad25 promotes the incision of UV-damaged DNA. These results provide the first evidence for a direct requirement of Rad3, Rad25, and of one or more of the TFIIHi subunits in the incision step of NER. The NER efficacy of TFIIH is greatly diminished or abolished upon substitution of Rad3 with the rad3 Arg- 48 mutant protein or Rad25 with the rad25 Arg-392 mutant protein, respectively, thus indicating a role of the Rad3 and Rad25 DNA helicase functions in the incision of damaged DNA. Our results further indicate that the carboxyl-terminal domain kinase (CTD) TFIIK is dispensable for the incision of damaged DNA in vitro. These studies reveal the differential requirement of Rad3 DNA helicase and CTD kinase activities in damage-specific incision versus RNA polymerase II transcription.
UR - http://www.scopus.com/inward/record.url?scp=15844390308&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=15844390308&partnerID=8YFLogxK
U2 - 10.1074/jbc.271.18.10821
DO - 10.1074/jbc.271.18.10821
M3 - Article
C2 - 8631896
AN - SCOPUS:15844390308
SN - 0021-9258
VL - 271
SP - 10821
EP - 10826
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 18
ER -