Reconstitution of yeast nucleotide excision repair with purified Rad proteins, replication protein A, and transcription factor TFIIH

Sami N. Guzder, Yvette Habraken, Patrick Sung, Louise Prakash, Satya Prakash

Research output: Contribution to journalArticlepeer-review

209 Scopus citations

Abstract

Nucleotide excision repair (NER) functions to remove DNA damage caused by ultraviolet light and by other agents that distort the DNA helix. The NER machinery has been conserved in structure and function from yeast to humans, and in humans, defective NER is the underlying cause of the cancer-prone disease xeroderma pigmentosum. Here, we reconstitute the incision reaction of NER in Saccharomyces cerevisiae using purified protein factors. The Rad14 protein, the Rad4-Rad23 complex, the Rad2 nuclease, the Rad1-Rad10 nuclease, replication protein A, and the RNA polymerase II transcription factor TFIIH were purified to near homogeneity from yeast. We show that these protein factors are both necessary and sufficient for dual incision of DNA damaged by either ultraviolet light or N-acetoxy-2-aminoacetylfluorene. Incision in the reconstituted system requires ATP, which cannot be substituted by adenosine 5'-O-(3-thiotriphosphate), suggesting that the hydrolysis of ATP is indispensable for the incision reaction. The excision DNA fragments formed as a result of dual incision are in the 24-27-nucleotide range.

Original languageEnglish (US)
Pages (from-to)12973-12976
Number of pages4
JournalJournal of Biological Chemistry
Volume270
Issue number22
DOIs
StatePublished - Jun 2 1995

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Reconstitution of yeast nucleotide excision repair with purified Rad proteins, replication protein A, and transcription factor TFIIH'. Together they form a unique fingerprint.

Cite this