Regional differences in the cellular immune response to experimental cutaneous or visceral infection with Leishmania donovani

Peter Melby, Yan Zhu Yang, Jun Cheng, Weiguo Zhao

Research output: Contribution to journalArticle

102 Citations (Scopus)

Abstract

Infection with the protozoan Leishmania donovani can cause serious visceral disease or subclinical infection in humans. To better understand the pathogenesis of this dichotomy, we have investigated the host cellular immune response to cutaneous or visceral infection in a murine model. Mice infected in the skin developed no detectable visceral parasitism, whereas intravenous inoculation resulted in hepatosplenomegaly and an increasing visceral parasite burden. Spleen cells from mice with locally controlled cutaneous infection showed strong parasite-specific proliferative and gamma interferon (IFN-γ) responses, but spleen cells from systemically infected mice were unresponsive to parasite antigens. The in situ expression of IFN-γ, interleukin-4 (IL-4), IL-10, IL-12, and inducible nitric oxide synthase (iNOS) mRNAs was determined in the spleen, draining lymph node (LN), and cutaneous site of inoculation. There was considerably greater expression of IFN-γ and IL-12 p40 mRNAs in the LN draining a locally controlled cutaneous infection than in the spleen following systemic infection. Similarly, there was a high level of IFN-γ production by LN cells following subcutaneous infection but no IFN-γ production by spleen cells following systemic infection. Splenic IL-4 expression was transiently increased early after systemic infection, but splenic IL-10 transcripts increased throughout the course of visceral infection. IL-4 and IL-10 mRNAs were also increased in the LN following cutaneous infection. iNOS mRNA was detected earlier in the LN draining a cutaneous site of infection compared to the spleen following systemic challenge. Thus, locally controlled cutaneous infection was associated with antigen-specific spleen cell responsiveness and markedly increased levels of IFN-γ, IL-12, and iNOS mRNA in the draining LN. Progressive splenic parasitism was associated with an early IL-4 response, markedly increased IL-10 but minimal IL-12 expression, and delayed expression of iNOS.

Original languageEnglish (US)
Pages (from-to)18-27
Number of pages10
JournalInfection and Immunity
Volume66
Issue number1
StatePublished - 1998
Externally publishedYes

Fingerprint

Leishmania donovani
Cellular Immunity
Skin
Infection
Spleen
Lymph Nodes
Nitric Oxide Synthase Type II
Interleukin-12
Interleukin-4
Interleukin-10
Messenger RNA
Parasites
Protozoan Infections
Antigens
Asymptomatic Infections
Interferon-gamma

ASJC Scopus subject areas

  • Immunology

Cite this

Regional differences in the cellular immune response to experimental cutaneous or visceral infection with Leishmania donovani. / Melby, Peter; Yang, Yan Zhu; Cheng, Jun; Zhao, Weiguo.

In: Infection and Immunity, Vol. 66, No. 1, 1998, p. 18-27.

Research output: Contribution to journalArticle

@article{e8a06f08c39b4208b0c3b178c5e4e363,
title = "Regional differences in the cellular immune response to experimental cutaneous or visceral infection with Leishmania donovani",
abstract = "Infection with the protozoan Leishmania donovani can cause serious visceral disease or subclinical infection in humans. To better understand the pathogenesis of this dichotomy, we have investigated the host cellular immune response to cutaneous or visceral infection in a murine model. Mice infected in the skin developed no detectable visceral parasitism, whereas intravenous inoculation resulted in hepatosplenomegaly and an increasing visceral parasite burden. Spleen cells from mice with locally controlled cutaneous infection showed strong parasite-specific proliferative and gamma interferon (IFN-γ) responses, but spleen cells from systemically infected mice were unresponsive to parasite antigens. The in situ expression of IFN-γ, interleukin-4 (IL-4), IL-10, IL-12, and inducible nitric oxide synthase (iNOS) mRNAs was determined in the spleen, draining lymph node (LN), and cutaneous site of inoculation. There was considerably greater expression of IFN-γ and IL-12 p40 mRNAs in the LN draining a locally controlled cutaneous infection than in the spleen following systemic infection. Similarly, there was a high level of IFN-γ production by LN cells following subcutaneous infection but no IFN-γ production by spleen cells following systemic infection. Splenic IL-4 expression was transiently increased early after systemic infection, but splenic IL-10 transcripts increased throughout the course of visceral infection. IL-4 and IL-10 mRNAs were also increased in the LN following cutaneous infection. iNOS mRNA was detected earlier in the LN draining a cutaneous site of infection compared to the spleen following systemic challenge. Thus, locally controlled cutaneous infection was associated with antigen-specific spleen cell responsiveness and markedly increased levels of IFN-γ, IL-12, and iNOS mRNA in the draining LN. Progressive splenic parasitism was associated with an early IL-4 response, markedly increased IL-10 but minimal IL-12 expression, and delayed expression of iNOS.",
author = "Peter Melby and Yang, {Yan Zhu} and Jun Cheng and Weiguo Zhao",
year = "1998",
language = "English (US)",
volume = "66",
pages = "18--27",
journal = "Infection and Immunity",
issn = "0019-9567",
publisher = "American Society for Microbiology",
number = "1",

}

TY - JOUR

T1 - Regional differences in the cellular immune response to experimental cutaneous or visceral infection with Leishmania donovani

AU - Melby, Peter

AU - Yang, Yan Zhu

AU - Cheng, Jun

AU - Zhao, Weiguo

PY - 1998

Y1 - 1998

N2 - Infection with the protozoan Leishmania donovani can cause serious visceral disease or subclinical infection in humans. To better understand the pathogenesis of this dichotomy, we have investigated the host cellular immune response to cutaneous or visceral infection in a murine model. Mice infected in the skin developed no detectable visceral parasitism, whereas intravenous inoculation resulted in hepatosplenomegaly and an increasing visceral parasite burden. Spleen cells from mice with locally controlled cutaneous infection showed strong parasite-specific proliferative and gamma interferon (IFN-γ) responses, but spleen cells from systemically infected mice were unresponsive to parasite antigens. The in situ expression of IFN-γ, interleukin-4 (IL-4), IL-10, IL-12, and inducible nitric oxide synthase (iNOS) mRNAs was determined in the spleen, draining lymph node (LN), and cutaneous site of inoculation. There was considerably greater expression of IFN-γ and IL-12 p40 mRNAs in the LN draining a locally controlled cutaneous infection than in the spleen following systemic infection. Similarly, there was a high level of IFN-γ production by LN cells following subcutaneous infection but no IFN-γ production by spleen cells following systemic infection. Splenic IL-4 expression was transiently increased early after systemic infection, but splenic IL-10 transcripts increased throughout the course of visceral infection. IL-4 and IL-10 mRNAs were also increased in the LN following cutaneous infection. iNOS mRNA was detected earlier in the LN draining a cutaneous site of infection compared to the spleen following systemic challenge. Thus, locally controlled cutaneous infection was associated with antigen-specific spleen cell responsiveness and markedly increased levels of IFN-γ, IL-12, and iNOS mRNA in the draining LN. Progressive splenic parasitism was associated with an early IL-4 response, markedly increased IL-10 but minimal IL-12 expression, and delayed expression of iNOS.

AB - Infection with the protozoan Leishmania donovani can cause serious visceral disease or subclinical infection in humans. To better understand the pathogenesis of this dichotomy, we have investigated the host cellular immune response to cutaneous or visceral infection in a murine model. Mice infected in the skin developed no detectable visceral parasitism, whereas intravenous inoculation resulted in hepatosplenomegaly and an increasing visceral parasite burden. Spleen cells from mice with locally controlled cutaneous infection showed strong parasite-specific proliferative and gamma interferon (IFN-γ) responses, but spleen cells from systemically infected mice were unresponsive to parasite antigens. The in situ expression of IFN-γ, interleukin-4 (IL-4), IL-10, IL-12, and inducible nitric oxide synthase (iNOS) mRNAs was determined in the spleen, draining lymph node (LN), and cutaneous site of inoculation. There was considerably greater expression of IFN-γ and IL-12 p40 mRNAs in the LN draining a locally controlled cutaneous infection than in the spleen following systemic infection. Similarly, there was a high level of IFN-γ production by LN cells following subcutaneous infection but no IFN-γ production by spleen cells following systemic infection. Splenic IL-4 expression was transiently increased early after systemic infection, but splenic IL-10 transcripts increased throughout the course of visceral infection. IL-4 and IL-10 mRNAs were also increased in the LN following cutaneous infection. iNOS mRNA was detected earlier in the LN draining a cutaneous site of infection compared to the spleen following systemic challenge. Thus, locally controlled cutaneous infection was associated with antigen-specific spleen cell responsiveness and markedly increased levels of IFN-γ, IL-12, and iNOS mRNA in the draining LN. Progressive splenic parasitism was associated with an early IL-4 response, markedly increased IL-10 but minimal IL-12 expression, and delayed expression of iNOS.

UR - http://www.scopus.com/inward/record.url?scp=0031985666&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0031985666&partnerID=8YFLogxK

M3 - Article

VL - 66

SP - 18

EP - 27

JO - Infection and Immunity

JF - Infection and Immunity

SN - 0019-9567

IS - 1

ER -