Regulation of Cyp1a1 induction by dioxin as a function of cell cycle phase

Ronald P. Santini, Scott Myrand, Cornelis Elferink, John J. Reiners

Research output: Contribution to journalArticle

36 Citations (Scopus)

Abstract

Analyses of CYP1A1 mRNA were used to monitor the responsiveness of murine hepatoma 1c1c7 and human monocytic U937 cells in different phases of the cell cycle to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Concentrations of TCDD capable of inducing CYP1A1 were not cytostatic to either cell line. Steady-state CYP1A1 mRNA contents were reduced (45-90%) in TCDD-treated cultures arrested in G2/M as a consequence of exposure to microtubule disrupters (Colcemid, estramustine, vinblastine) or the microtubule stabilizer Taxol, relative to TCDD-treated asynchronous 1c1c7 cultures. The accumulation of mRNAs corresponding to Nmo1, another TCDD-inducible gene of the Ah battery, was also reduced in TCDD-treated G2/M cultures. Quantitative reverse transcriptase-polymerase chain reaction analyses of CYP1A1 heterogeneous nuclear RNA (hnRNA) revealed that Cyp1a1 transcription was suppressed in G2/M cells. This suppression reflected neither changes in the relative content of the proteins comprising the aryl hydrocarbon receptor (AHR) complex nor a suppression of AHR activation and translocation to the nucleus. Release of 1c1c7 cultures arrested in G2/M restored TCDD responsiveness. Centrifugal elutriation of TCDD-treated asynchronously growing U937 cells was used to prepare populations of cells in specific phases of the cell cycle. Within 3 h of TCDD exposure late G1/early S phase cells had CYP1A1 mRNA contents ∼1.4- and 3-fold higher than the contents of asynchronous/early G1 and G2/M cultures, respectively. These studies suggest that the transcriptional activation of members of the Ah battery by TCDD is cell cycle-dependent, and markedly suppressed in G2/M cells.

Original languageEnglish (US)
Pages (from-to)718-728
Number of pages11
JournalJournal of Pharmacology and Experimental Therapeutics
Volume299
Issue number2
StatePublished - 2001

Fingerprint

Dioxins
Cell Cycle
Cytochrome P-450 CYP1A1
Aryl Hydrocarbon Receptors
U937 Cells
Messenger RNA
Microtubules
Heterogeneous Nuclear RNA
Estramustine
Polychlorinated Dibenzodioxins
Demecolcine
Vinblastine
Cytostatic Agents
Paclitaxel
Reverse Transcriptase Polymerase Chain Reaction
S Phase
Transcriptional Activation
Hepatocellular Carcinoma
Cell Line

ASJC Scopus subject areas

  • Pharmacology

Cite this

Regulation of Cyp1a1 induction by dioxin as a function of cell cycle phase. / Santini, Ronald P.; Myrand, Scott; Elferink, Cornelis; Reiners, John J.

In: Journal of Pharmacology and Experimental Therapeutics, Vol. 299, No. 2, 2001, p. 718-728.

Research output: Contribution to journalArticle

Santini, Ronald P. ; Myrand, Scott ; Elferink, Cornelis ; Reiners, John J. / Regulation of Cyp1a1 induction by dioxin as a function of cell cycle phase. In: Journal of Pharmacology and Experimental Therapeutics. 2001 ; Vol. 299, No. 2. pp. 718-728.
@article{e0a7b1c8ccca43b0994714fc16081298,
title = "Regulation of Cyp1a1 induction by dioxin as a function of cell cycle phase",
abstract = "Analyses of CYP1A1 mRNA were used to monitor the responsiveness of murine hepatoma 1c1c7 and human monocytic U937 cells in different phases of the cell cycle to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Concentrations of TCDD capable of inducing CYP1A1 were not cytostatic to either cell line. Steady-state CYP1A1 mRNA contents were reduced (45-90{\%}) in TCDD-treated cultures arrested in G2/M as a consequence of exposure to microtubule disrupters (Colcemid, estramustine, vinblastine) or the microtubule stabilizer Taxol, relative to TCDD-treated asynchronous 1c1c7 cultures. The accumulation of mRNAs corresponding to Nmo1, another TCDD-inducible gene of the Ah battery, was also reduced in TCDD-treated G2/M cultures. Quantitative reverse transcriptase-polymerase chain reaction analyses of CYP1A1 heterogeneous nuclear RNA (hnRNA) revealed that Cyp1a1 transcription was suppressed in G2/M cells. This suppression reflected neither changes in the relative content of the proteins comprising the aryl hydrocarbon receptor (AHR) complex nor a suppression of AHR activation and translocation to the nucleus. Release of 1c1c7 cultures arrested in G2/M restored TCDD responsiveness. Centrifugal elutriation of TCDD-treated asynchronously growing U937 cells was used to prepare populations of cells in specific phases of the cell cycle. Within 3 h of TCDD exposure late G1/early S phase cells had CYP1A1 mRNA contents ∼1.4- and 3-fold higher than the contents of asynchronous/early G1 and G2/M cultures, respectively. These studies suggest that the transcriptional activation of members of the Ah battery by TCDD is cell cycle-dependent, and markedly suppressed in G2/M cells.",
author = "Santini, {Ronald P.} and Scott Myrand and Cornelis Elferink and Reiners, {John J.}",
year = "2001",
language = "English (US)",
volume = "299",
pages = "718--728",
journal = "Journal of Pharmacology and Experimental Therapeutics",
issn = "0022-3565",
publisher = "American Society for Pharmacology and Experimental Therapeutics",
number = "2",

}

TY - JOUR

T1 - Regulation of Cyp1a1 induction by dioxin as a function of cell cycle phase

AU - Santini, Ronald P.

AU - Myrand, Scott

AU - Elferink, Cornelis

AU - Reiners, John J.

PY - 2001

Y1 - 2001

N2 - Analyses of CYP1A1 mRNA were used to monitor the responsiveness of murine hepatoma 1c1c7 and human monocytic U937 cells in different phases of the cell cycle to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Concentrations of TCDD capable of inducing CYP1A1 were not cytostatic to either cell line. Steady-state CYP1A1 mRNA contents were reduced (45-90%) in TCDD-treated cultures arrested in G2/M as a consequence of exposure to microtubule disrupters (Colcemid, estramustine, vinblastine) or the microtubule stabilizer Taxol, relative to TCDD-treated asynchronous 1c1c7 cultures. The accumulation of mRNAs corresponding to Nmo1, another TCDD-inducible gene of the Ah battery, was also reduced in TCDD-treated G2/M cultures. Quantitative reverse transcriptase-polymerase chain reaction analyses of CYP1A1 heterogeneous nuclear RNA (hnRNA) revealed that Cyp1a1 transcription was suppressed in G2/M cells. This suppression reflected neither changes in the relative content of the proteins comprising the aryl hydrocarbon receptor (AHR) complex nor a suppression of AHR activation and translocation to the nucleus. Release of 1c1c7 cultures arrested in G2/M restored TCDD responsiveness. Centrifugal elutriation of TCDD-treated asynchronously growing U937 cells was used to prepare populations of cells in specific phases of the cell cycle. Within 3 h of TCDD exposure late G1/early S phase cells had CYP1A1 mRNA contents ∼1.4- and 3-fold higher than the contents of asynchronous/early G1 and G2/M cultures, respectively. These studies suggest that the transcriptional activation of members of the Ah battery by TCDD is cell cycle-dependent, and markedly suppressed in G2/M cells.

AB - Analyses of CYP1A1 mRNA were used to monitor the responsiveness of murine hepatoma 1c1c7 and human monocytic U937 cells in different phases of the cell cycle to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Concentrations of TCDD capable of inducing CYP1A1 were not cytostatic to either cell line. Steady-state CYP1A1 mRNA contents were reduced (45-90%) in TCDD-treated cultures arrested in G2/M as a consequence of exposure to microtubule disrupters (Colcemid, estramustine, vinblastine) or the microtubule stabilizer Taxol, relative to TCDD-treated asynchronous 1c1c7 cultures. The accumulation of mRNAs corresponding to Nmo1, another TCDD-inducible gene of the Ah battery, was also reduced in TCDD-treated G2/M cultures. Quantitative reverse transcriptase-polymerase chain reaction analyses of CYP1A1 heterogeneous nuclear RNA (hnRNA) revealed that Cyp1a1 transcription was suppressed in G2/M cells. This suppression reflected neither changes in the relative content of the proteins comprising the aryl hydrocarbon receptor (AHR) complex nor a suppression of AHR activation and translocation to the nucleus. Release of 1c1c7 cultures arrested in G2/M restored TCDD responsiveness. Centrifugal elutriation of TCDD-treated asynchronously growing U937 cells was used to prepare populations of cells in specific phases of the cell cycle. Within 3 h of TCDD exposure late G1/early S phase cells had CYP1A1 mRNA contents ∼1.4- and 3-fold higher than the contents of asynchronous/early G1 and G2/M cultures, respectively. These studies suggest that the transcriptional activation of members of the Ah battery by TCDD is cell cycle-dependent, and markedly suppressed in G2/M cells.

UR - http://www.scopus.com/inward/record.url?scp=0034769011&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0034769011&partnerID=8YFLogxK

M3 - Article

C2 - 11602686

AN - SCOPUS:0034769011

VL - 299

SP - 718

EP - 728

JO - Journal of Pharmacology and Experimental Therapeutics

JF - Journal of Pharmacology and Experimental Therapeutics

SN - 0022-3565

IS - 2

ER -