Abstract
Immune cascade is one of major factors leading to cardiac dysfunction after burn injury. TLRs are a class of pattern-recognition receptors (PRRs) that initiate the innate immune response by sensing conserved molecular patterns for early immune recognition of a pathogen. The Rat Toll-Like Receptor (TLR) Signaling Pathway RT2 Profiler PCR Array profiles the expression of 84 genes central to TLR-mediated signal transduction and innate immunity, and is a validated tool for identifying differentially expressed genes (DEGs). We employed the PCR array to identify burn-induced cardiac TLR-signaling-related DEGs. A total of 38 up-regulated DEGs and 19 downregulated DEGs were identified. Network analysis determined that all DEGS had 10 clusters, while up-regulated DEGs had 6 clusters and down-regulated DEGs had 5 clusters. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that DEGs were involved in TLR signaling, the RIG-I-Like receptor signaling pathway, the IL-17 signaling pathway, and the NFkB signaling pathway. Function analysis indicated that DEGs were associated with Toll-like receptor 2 binding, Lipopeptide binding, Toll-like receptor binding, and NAD(P)+ nucleosidase activity. The validation of 18 upregulated DEGs (≥10-fold change) and 6 down-regulated DEGs (≤5-fold change) demonstrated that the PCR array is a trusted method for identifying DEGs. The analysis of validated DEG-derived protein–protein interaction networks will guide our future investigations. In summary, this study not only identified the TLR-signaling-pathway-related DEGs after burn injury, but also confirmed that the burn-induced cardiac cytokine cascade plays an important role in burn-induced heart dysfunction. The results will provide the novel therapeutic targets to protect the heart after burn injury.
Original language | English (US) |
---|---|
Article number | 1007 |
Journal | Journal of Personalized Medicine |
Volume | 12 |
Issue number | 6 |
DOIs | |
State | Published - Jun 2022 |
Keywords
- burn injury
- cardiac dysfunction
- cytokines
- inflammatory cascade
- microarray
ASJC Scopus subject areas
- Medicine (miscellaneous)