TY - JOUR
T1 - Requirement for SNAPC1 in transcriptional responsiveness to diverse extracellular signals
AU - Baillat, David
AU - Gardini, Alessandro
AU - Cesaroni, Matteo
AU - Shiekhattar, Ramin
PY - 2012/11
Y1 - 2012/11
N2 - Initiation of transcription of RNA polymerase II (RNAPII)-dependent genes requires the participation of a host of basal transcription factors. Among genes requiring RNAPII for transcription, small nuclear RNAs (snRNAs) display a further requirement for a factor known as snRNA-activating protein complex (SNAPc). The scope of the biological function of SNAPc and its requirement for transcription of protein-coding genes has not been elucidated. To determine the genome-wide occupancy of SNAPc, we performed chromatin immunoprecipitation followed by high-throughput sequencing using antibodies against SNAPC4 and SNAPC1 subunits. Interestingly, while SNAPC4 occupancy was limited to snRNA genes, SNAPC1 chromatin residence extended beyond snRNA genes to include a large number of transcriptionally active protein-coding genes. Notably, SNAPC1 occupancy on highly active genes mirrored that of elongating RNAPII extending through the bodies and 3′ ends of protein-coding genes. Inhibition of transcriptional elongation resulted in the loss of SNAPC1 from the 3′ ends of genes, reflecting a functional association between SNAPC1 and elongating RNAPII. Importantly, while depletion of SNAPC1 had a small effect on basal transcription, it diminished the transcriptional responsiveness of a large number of genes to two distinct extracellular stimuli, epidermal growth factor (EGF) and retinoic acid (RA). These results highlight a role for SNAPC1 as a general transcriptional coactivator that functions through elongating RNAPII.
AB - Initiation of transcription of RNA polymerase II (RNAPII)-dependent genes requires the participation of a host of basal transcription factors. Among genes requiring RNAPII for transcription, small nuclear RNAs (snRNAs) display a further requirement for a factor known as snRNA-activating protein complex (SNAPc). The scope of the biological function of SNAPc and its requirement for transcription of protein-coding genes has not been elucidated. To determine the genome-wide occupancy of SNAPc, we performed chromatin immunoprecipitation followed by high-throughput sequencing using antibodies against SNAPC4 and SNAPC1 subunits. Interestingly, while SNAPC4 occupancy was limited to snRNA genes, SNAPC1 chromatin residence extended beyond snRNA genes to include a large number of transcriptionally active protein-coding genes. Notably, SNAPC1 occupancy on highly active genes mirrored that of elongating RNAPII extending through the bodies and 3′ ends of protein-coding genes. Inhibition of transcriptional elongation resulted in the loss of SNAPC1 from the 3′ ends of genes, reflecting a functional association between SNAPC1 and elongating RNAPII. Importantly, while depletion of SNAPC1 had a small effect on basal transcription, it diminished the transcriptional responsiveness of a large number of genes to two distinct extracellular stimuli, epidermal growth factor (EGF) and retinoic acid (RA). These results highlight a role for SNAPC1 as a general transcriptional coactivator that functions through elongating RNAPII.
UR - http://www.scopus.com/inward/record.url?scp=84868680765&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84868680765&partnerID=8YFLogxK
U2 - 10.1128/MCB.00906-12
DO - 10.1128/MCB.00906-12
M3 - Article
C2 - 22966203
AN - SCOPUS:84868680765
SN - 0270-7306
VL - 32
SP - 4642
EP - 4650
JO - Molecular and cellular biology
JF - Molecular and cellular biology
IS - 22
ER -