Rescue of infectious Arumowot virus from cloned cDNA: Posttranslational degradation of Arumowot virus NSs protein in human cells

Hoai J. Hallam, Nandadeva Lokugamage, Tetsuro Ikegami

Research output: Contribution to journalArticle

Abstract

Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to Africa and the Middle East, affecting both humans and ruminants. There are no licensed vaccines or antivirals available for humans, whereas research using RVF virus (RVFV) is strictly regulated in many countries with safety concerns. Nonpathogenic Arumowot virus (AMTV), a mosquitoborne phlebovirus in Africa, is likely useful for the screening of broad-acting antiviral candidates for phleboviruses including RVFV, as well as a potential vaccine vector for RVF. In this study, we aimed to generate T7 RNA polymerase-driven reverse genetics system for AMTV. We hypothesized that recombinant AMTV (rAMTV) is viable, and AMTV NSs protein is dispensable for efficient replication of rAMTV in type-I IFN-incompetent cells, whereas AMTV NSs proteins support robust viral replication in type-I IFN-competent cells. The study demonstrated the rescue of rAMTV and that lacking the NSs gene (rAMTVδNSs), that expressing green fluorescent protein (GFP) (rAMTV-GFP) or that expressing Renilla luciferase (rAMTV-rLuc) from cloned cDNA. The rAMTV-rLuc and the RVFV rMP12-rLuc showed a similar susceptibility to favipiravir or ribavirin. Interestingly, neither of rAMTV nor rAMTVδNSs replicated efficiently in human MRC-5 or A549 cells, regardless of the presence of NSs gene. Little accumulation of AMTV NSs protein occurred in those cells, which was restored via treatment with proteasomal inhibitor MG132. In murine MEF or Hepa1-6 cells, rAMTV, but not rAMTVδNSs, replicated efficiently, with an inhibition of IFN-β gene upregulation. This study showed an establishment of the first reverse genetics for AMTV, a lack of stability of AMTV NSs proteins in human cells, and an IFN-β gene antagonist function of AMTV NSs proteins in murine cells. The AMTV can be a nonpathogenic surrogate model for studying phleboviruses including RVFV.

Original languageEnglish (US)
Article numbere0007904
JournalPLoS neglected tropical diseases
Volume13
Issue number11
DOIs
StatePublished - Jan 1 2019

Fingerprint

Complementary DNA
Viruses
Proteins
Phlebovirus
Rift Valley Fever
Genes
Reverse Genetics
Green Fluorescent Proteins
Antiviral Agents
Vaccines
Renilla Luciferases
Rift Valley fever virus
Middle East
Ribavirin
Zoonoses
Ruminants
Culicidae
Up-Regulation
Safety

ASJC Scopus subject areas

  • Public Health, Environmental and Occupational Health
  • Infectious Diseases

Cite this

Rescue of infectious Arumowot virus from cloned cDNA : Posttranslational degradation of Arumowot virus NSs protein in human cells. / Hallam, Hoai J.; Lokugamage, Nandadeva; Ikegami, Tetsuro.

In: PLoS neglected tropical diseases, Vol. 13, No. 11, e0007904, 01.01.2019.

Research output: Contribution to journalArticle

@article{67006593b4264125bac8e0ff25fd34a1,
title = "Rescue of infectious Arumowot virus from cloned cDNA: Posttranslational degradation of Arumowot virus NSs protein in human cells",
abstract = "Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to Africa and the Middle East, affecting both humans and ruminants. There are no licensed vaccines or antivirals available for humans, whereas research using RVF virus (RVFV) is strictly regulated in many countries with safety concerns. Nonpathogenic Arumowot virus (AMTV), a mosquitoborne phlebovirus in Africa, is likely useful for the screening of broad-acting antiviral candidates for phleboviruses including RVFV, as well as a potential vaccine vector for RVF. In this study, we aimed to generate T7 RNA polymerase-driven reverse genetics system for AMTV. We hypothesized that recombinant AMTV (rAMTV) is viable, and AMTV NSs protein is dispensable for efficient replication of rAMTV in type-I IFN-incompetent cells, whereas AMTV NSs proteins support robust viral replication in type-I IFN-competent cells. The study demonstrated the rescue of rAMTV and that lacking the NSs gene (rAMTVδNSs), that expressing green fluorescent protein (GFP) (rAMTV-GFP) or that expressing Renilla luciferase (rAMTV-rLuc) from cloned cDNA. The rAMTV-rLuc and the RVFV rMP12-rLuc showed a similar susceptibility to favipiravir or ribavirin. Interestingly, neither of rAMTV nor rAMTVδNSs replicated efficiently in human MRC-5 or A549 cells, regardless of the presence of NSs gene. Little accumulation of AMTV NSs protein occurred in those cells, which was restored via treatment with proteasomal inhibitor MG132. In murine MEF or Hepa1-6 cells, rAMTV, but not rAMTVδNSs, replicated efficiently, with an inhibition of IFN-β gene upregulation. This study showed an establishment of the first reverse genetics for AMTV, a lack of stability of AMTV NSs proteins in human cells, and an IFN-β gene antagonist function of AMTV NSs proteins in murine cells. The AMTV can be a nonpathogenic surrogate model for studying phleboviruses including RVFV.",
author = "Hallam, {Hoai J.} and Nandadeva Lokugamage and Tetsuro Ikegami",
year = "2019",
month = "1",
day = "1",
doi = "10.1371/journal.pntd.0007904",
language = "English (US)",
volume = "13",
journal = "PLoS Neglected Tropical Diseases",
issn = "1935-2727",
publisher = "Public Library of Science",
number = "11",

}

TY - JOUR

T1 - Rescue of infectious Arumowot virus from cloned cDNA

T2 - Posttranslational degradation of Arumowot virus NSs protein in human cells

AU - Hallam, Hoai J.

AU - Lokugamage, Nandadeva

AU - Ikegami, Tetsuro

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to Africa and the Middle East, affecting both humans and ruminants. There are no licensed vaccines or antivirals available for humans, whereas research using RVF virus (RVFV) is strictly regulated in many countries with safety concerns. Nonpathogenic Arumowot virus (AMTV), a mosquitoborne phlebovirus in Africa, is likely useful for the screening of broad-acting antiviral candidates for phleboviruses including RVFV, as well as a potential vaccine vector for RVF. In this study, we aimed to generate T7 RNA polymerase-driven reverse genetics system for AMTV. We hypothesized that recombinant AMTV (rAMTV) is viable, and AMTV NSs protein is dispensable for efficient replication of rAMTV in type-I IFN-incompetent cells, whereas AMTV NSs proteins support robust viral replication in type-I IFN-competent cells. The study demonstrated the rescue of rAMTV and that lacking the NSs gene (rAMTVδNSs), that expressing green fluorescent protein (GFP) (rAMTV-GFP) or that expressing Renilla luciferase (rAMTV-rLuc) from cloned cDNA. The rAMTV-rLuc and the RVFV rMP12-rLuc showed a similar susceptibility to favipiravir or ribavirin. Interestingly, neither of rAMTV nor rAMTVδNSs replicated efficiently in human MRC-5 or A549 cells, regardless of the presence of NSs gene. Little accumulation of AMTV NSs protein occurred in those cells, which was restored via treatment with proteasomal inhibitor MG132. In murine MEF or Hepa1-6 cells, rAMTV, but not rAMTVδNSs, replicated efficiently, with an inhibition of IFN-β gene upregulation. This study showed an establishment of the first reverse genetics for AMTV, a lack of stability of AMTV NSs proteins in human cells, and an IFN-β gene antagonist function of AMTV NSs proteins in murine cells. The AMTV can be a nonpathogenic surrogate model for studying phleboviruses including RVFV.

AB - Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to Africa and the Middle East, affecting both humans and ruminants. There are no licensed vaccines or antivirals available for humans, whereas research using RVF virus (RVFV) is strictly regulated in many countries with safety concerns. Nonpathogenic Arumowot virus (AMTV), a mosquitoborne phlebovirus in Africa, is likely useful for the screening of broad-acting antiviral candidates for phleboviruses including RVFV, as well as a potential vaccine vector for RVF. In this study, we aimed to generate T7 RNA polymerase-driven reverse genetics system for AMTV. We hypothesized that recombinant AMTV (rAMTV) is viable, and AMTV NSs protein is dispensable for efficient replication of rAMTV in type-I IFN-incompetent cells, whereas AMTV NSs proteins support robust viral replication in type-I IFN-competent cells. The study demonstrated the rescue of rAMTV and that lacking the NSs gene (rAMTVδNSs), that expressing green fluorescent protein (GFP) (rAMTV-GFP) or that expressing Renilla luciferase (rAMTV-rLuc) from cloned cDNA. The rAMTV-rLuc and the RVFV rMP12-rLuc showed a similar susceptibility to favipiravir or ribavirin. Interestingly, neither of rAMTV nor rAMTVδNSs replicated efficiently in human MRC-5 or A549 cells, regardless of the presence of NSs gene. Little accumulation of AMTV NSs protein occurred in those cells, which was restored via treatment with proteasomal inhibitor MG132. In murine MEF or Hepa1-6 cells, rAMTV, but not rAMTVδNSs, replicated efficiently, with an inhibition of IFN-β gene upregulation. This study showed an establishment of the first reverse genetics for AMTV, a lack of stability of AMTV NSs proteins in human cells, and an IFN-β gene antagonist function of AMTV NSs proteins in murine cells. The AMTV can be a nonpathogenic surrogate model for studying phleboviruses including RVFV.

UR - http://www.scopus.com/inward/record.url?scp=85076197239&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85076197239&partnerID=8YFLogxK

U2 - 10.1371/journal.pntd.0007904

DO - 10.1371/journal.pntd.0007904

M3 - Article

C2 - 31751340

AN - SCOPUS:85076197239

VL - 13

JO - PLoS Neglected Tropical Diseases

JF - PLoS Neglected Tropical Diseases

SN - 1935-2727

IS - 11

M1 - e0007904

ER -