TY - JOUR
T1 - Respiratory syncytial virus-inducible BCL-3 expression antagonizes the STAT/IRF and NF-κB signaling pathways by inducing histone deacetylase 1 recruitment to the interleukin-8 promoter
AU - Jamaluddin, Mohammad
AU - Choudhary, Sanjeev
AU - Wang, Shaofei
AU - Casola, Antonella
AU - Huda, Ruksana
AU - Garofalo, Roberto P.
AU - Ray, Sutapa
AU - Brasier, Allan
PY - 2005/12
Y1 - 2005/12
N2 - Respiratory syncytial virus (RSV) is a paramyxovirus that produces airway inflammation, in part by inducing interleukin-8 (IL-8) expression, a CXC-type chemokine, via the NF-κB/RelA and STAT/IRF signaling pathways. In RSV-infected A549 cells, IL-8 transcription attenuates after 24 h in spite of ongoing viral replication and persistence of nuclear RelA, suggesting a mechanism for transcriptional attenuation. RSV infection induces B-cell lymphoma protein -3 (Bcl-3) expression 6 to 12 h after viral infection, at times when IL-8 transcription is inhibited. By contrast, 293 cells, deficient in inducible Bcl-3 expression, show no attenuation of IL-8 transcription. We therefore examined Bcl-3's role in terminating virus-inducible IL-8 transcription. Transient expression of Bcl-3 potently inhibited virus-inducible IL-8 transcription by disrupting both the NF-κB and STAT/IRF pathways. Although previously Bcl-3 was thought to capture 50-kDa NF-κB isoforms in the cytoplasm, immunoprecipitation (IP) and electrophoretic mobility shift assays indicate that nuclear Bcl-3 associates with NF-κB without affecting DNA binding. Additionally, Bcl-3 potently inhibited the STAT/ IRF pathway. Nondenaturing co-IP assays indicate that nuclear Bcl-3 associates with STAT-1 and histone deacetylase 1 (HDAC-1), increasing HDAC-1 recruitment to the IL-8 promoter. Treatment with the HDAC inhibitor trichostatin A blocks attenuation of IL-8 transcription. A nuclear targeting-deficient Bcl-3 is unable to enhance HDAC-1-mediated chemokine repression. Finally, small inhibitory RNA-mediated Bcl-3 "knock-down" resulted in enhanced RSV-induced chemokine expression in A549 cells. These data indicate that Bcl-3 is a virus-inducible inhibitor of chemokine transcription by interfering with the NF-κB and STAT/IRF signaling pathways by complexing with them and recruiting HDAC-1 to attenuate target promoter activity.
AB - Respiratory syncytial virus (RSV) is a paramyxovirus that produces airway inflammation, in part by inducing interleukin-8 (IL-8) expression, a CXC-type chemokine, via the NF-κB/RelA and STAT/IRF signaling pathways. In RSV-infected A549 cells, IL-8 transcription attenuates after 24 h in spite of ongoing viral replication and persistence of nuclear RelA, suggesting a mechanism for transcriptional attenuation. RSV infection induces B-cell lymphoma protein -3 (Bcl-3) expression 6 to 12 h after viral infection, at times when IL-8 transcription is inhibited. By contrast, 293 cells, deficient in inducible Bcl-3 expression, show no attenuation of IL-8 transcription. We therefore examined Bcl-3's role in terminating virus-inducible IL-8 transcription. Transient expression of Bcl-3 potently inhibited virus-inducible IL-8 transcription by disrupting both the NF-κB and STAT/IRF pathways. Although previously Bcl-3 was thought to capture 50-kDa NF-κB isoforms in the cytoplasm, immunoprecipitation (IP) and electrophoretic mobility shift assays indicate that nuclear Bcl-3 associates with NF-κB without affecting DNA binding. Additionally, Bcl-3 potently inhibited the STAT/ IRF pathway. Nondenaturing co-IP assays indicate that nuclear Bcl-3 associates with STAT-1 and histone deacetylase 1 (HDAC-1), increasing HDAC-1 recruitment to the IL-8 promoter. Treatment with the HDAC inhibitor trichostatin A blocks attenuation of IL-8 transcription. A nuclear targeting-deficient Bcl-3 is unable to enhance HDAC-1-mediated chemokine repression. Finally, small inhibitory RNA-mediated Bcl-3 "knock-down" resulted in enhanced RSV-induced chemokine expression in A549 cells. These data indicate that Bcl-3 is a virus-inducible inhibitor of chemokine transcription by interfering with the NF-κB and STAT/IRF signaling pathways by complexing with them and recruiting HDAC-1 to attenuate target promoter activity.
UR - http://www.scopus.com/inward/record.url?scp=29744468389&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=29744468389&partnerID=8YFLogxK
U2 - 10.1128/JVI.79.24.15302-15313.2005
DO - 10.1128/JVI.79.24.15302-15313.2005
M3 - Article
C2 - 16306601
AN - SCOPUS:29744468389
SN - 0022-538X
VL - 79
SP - 15302
EP - 15313
JO - Journal of virology
JF - Journal of virology
IS - 24
ER -