Respiratory syncytial virus infection: Mechanisms of redox control and novel therapeutic opportunities

Research output: Contribution to journalArticle

35 Scopus citations

Abstract

Respiratory syncytial virus (RSV) is one of the most important causes of upper and lower respiratory tract infections in infants and young children, for which no effective treatment is currently available. Although the mechanisms of RSV-induced airway disease remain incompletely defined, the lung inflammatory response is thought to play a central pathogenetic role. In the past few years, we and others have provided increasing evidence of a role of reactive oxygen species (ROS) as important regulators of RSV-induced cellular signaling leading to the expression of key proinflammatory mediators, such as cytokines and chemokines. In addition, RSV-induced oxidative stress, which results from an imbalance between ROS production and airway antioxidant defenses, due to a widespread inhibition of antioxidant enzyme expression, is likely to play a fundamental role in the pathogenesis of RSV-associated lung inflammatory disease, as demonstrated by a significant increase in markers of oxidative injury, which correlate with the severity of clinical illness, in children with RSV infection. Modulation of ROS production and oxidative stress therefore represents a potential novel pharmacological approach to ameliorate RSV-induced lung inflammation and its long-term consequences.

Original languageEnglish (US)
Pages (from-to)186-217
Number of pages32
JournalAntioxidants and Redox Signaling
Volume18
Issue number2
DOIs
StatePublished - Jan 10 2013

    Fingerprint

ASJC Scopus subject areas

  • Biochemistry
  • Cell Biology
  • Molecular Biology
  • Physiology
  • Clinical Biochemistry

Cite this