Respiratory syncytial virus influences NF-κB-dependent gene expression through a novel pathway involving MAP3K14/NIK expression and nuclear complex formation with NF-κB2

Sanjeev Choudhary, Steve Boldogh, Roberto Garofalo, Mohammad Jamaluddin, Allan R. Brasier

Research output: Contribution to journalArticle

55 Citations (Scopus)

Abstract

A member of the Paramyxoviridae family of RNA viruses, respiratory syncytial virus (RSV), is a leading cause of epidemic respiratory tract infection in children. In children, RSV primarily replicates in the airway mucosa, a process that alters epithelial cell chemokine expression, thereby inducing airway inflammation. We investigated the role of the mitogen-activated protein kinase kinase kinase 14/NF-κB-inducing kinase (NIK) in the activation of NF-κB-dependent genes in alveolus-like A549 cells. RSV infection induces a time dependent increase of NIK mRNA and protein expression that peaks 12 to 24 h after viral exposure. Immunoprecipitation kinase assays indicate that NIK kinase activity is activated even more rapidly (within 6 h of RSV adsorption) associated with an endogenous ∼50-kDa NF-κB2 substrate. Because NIK associates with IKKα to mediate processing of the 100-kDa NF-κB2 precursor into its 52-kDa DNA binding isoform ("p52"), the effects of RSV on NIK complex formation with IKKα and NF-κB2 were determined by coimmunoprecipitation assay. We find that NIK, IKKα, and both 100 kDa- and 52-kDa NF-κB2 isoforms strongly complex 15 h after exposure to RSV at times subsequent to NIK kinase activation. Western immunoblot and microaffinity DNA pull-down assays showed a parallel increase in nuclear translocation and DNA binding of the NF-κB2-Rel B complex. Interestingly, we make the novel observations that NIK also transiently translocates into the nucleus complexed with 52-kDa NF-κB2. Small interfering RNA-mediated NIK "knock-down" blocked RSV-inducible 52-kDa NF-κB2 processing and interfered with the early activation of a subset of NF-κB-dependent genes, indicating the importance of this activation pathway in the genomic NF-κB response to RSV. Together, these data indicate that RSV infection rapidly activates the noncanonical NF-κB activation pathway prior to the more potent canonical pathway activation. This appears to be through a novel mechanism involving induction of NIK kinase activity, expression, and nuclear translocation of a ternary complex with IKKα and processed NF-κB2.

Original languageEnglish (US)
Pages (from-to)8948-8959
Number of pages12
JournalJournal of Virology
Volume79
Issue number14
DOIs
StatePublished - Jul 2005

Fingerprint

Respiratory Syncytial Viruses
phosphotransferases (kinases)
Phosphotransferases
Gene Expression
gene expression
viruses
IKappaB kinase
Respiratory Syncytial Virus Infections
DNA
Protein Isoforms
Paramyxoviridae
assays
MAP Kinase Kinase Kinases
mitogen-activated protein kinase kinase kinase
RNA Viruses
Chemokines
chemokines
Immunoprecipitation
small interfering RNA
Respiratory Tract Infections

ASJC Scopus subject areas

  • Immunology

Cite this

Respiratory syncytial virus influences NF-κB-dependent gene expression through a novel pathway involving MAP3K14/NIK expression and nuclear complex formation with NF-κB2. / Choudhary, Sanjeev; Boldogh, Steve; Garofalo, Roberto; Jamaluddin, Mohammad; Brasier, Allan R.

In: Journal of Virology, Vol. 79, No. 14, 07.2005, p. 8948-8959.

Research output: Contribution to journalArticle

@article{a8f905793bd14b02bd837c6039c73710,
title = "Respiratory syncytial virus influences NF-κB-dependent gene expression through a novel pathway involving MAP3K14/NIK expression and nuclear complex formation with NF-κB2",
abstract = "A member of the Paramyxoviridae family of RNA viruses, respiratory syncytial virus (RSV), is a leading cause of epidemic respiratory tract infection in children. In children, RSV primarily replicates in the airway mucosa, a process that alters epithelial cell chemokine expression, thereby inducing airway inflammation. We investigated the role of the mitogen-activated protein kinase kinase kinase 14/NF-κB-inducing kinase (NIK) in the activation of NF-κB-dependent genes in alveolus-like A549 cells. RSV infection induces a time dependent increase of NIK mRNA and protein expression that peaks 12 to 24 h after viral exposure. Immunoprecipitation kinase assays indicate that NIK kinase activity is activated even more rapidly (within 6 h of RSV adsorption) associated with an endogenous ∼50-kDa NF-κB2 substrate. Because NIK associates with IKKα to mediate processing of the 100-kDa NF-κB2 precursor into its 52-kDa DNA binding isoform ({"}p52{"}), the effects of RSV on NIK complex formation with IKKα and NF-κB2 were determined by coimmunoprecipitation assay. We find that NIK, IKKα, and both 100 kDa- and 52-kDa NF-κB2 isoforms strongly complex 15 h after exposure to RSV at times subsequent to NIK kinase activation. Western immunoblot and microaffinity DNA pull-down assays showed a parallel increase in nuclear translocation and DNA binding of the NF-κB2-Rel B complex. Interestingly, we make the novel observations that NIK also transiently translocates into the nucleus complexed with 52-kDa NF-κB2. Small interfering RNA-mediated NIK {"}knock-down{"} blocked RSV-inducible 52-kDa NF-κB2 processing and interfered with the early activation of a subset of NF-κB-dependent genes, indicating the importance of this activation pathway in the genomic NF-κB response to RSV. Together, these data indicate that RSV infection rapidly activates the noncanonical NF-κB activation pathway prior to the more potent canonical pathway activation. This appears to be through a novel mechanism involving induction of NIK kinase activity, expression, and nuclear translocation of a ternary complex with IKKα and processed NF-κB2.",
author = "Sanjeev Choudhary and Steve Boldogh and Roberto Garofalo and Mohammad Jamaluddin and Brasier, {Allan R.}",
year = "2005",
month = "7",
doi = "10.1128/JVI.79.14.8948-8959.2005",
language = "English (US)",
volume = "79",
pages = "8948--8959",
journal = "Journal of Virology",
issn = "0022-538X",
publisher = "American Society for Microbiology",
number = "14",

}

TY - JOUR

T1 - Respiratory syncytial virus influences NF-κB-dependent gene expression through a novel pathway involving MAP3K14/NIK expression and nuclear complex formation with NF-κB2

AU - Choudhary, Sanjeev

AU - Boldogh, Steve

AU - Garofalo, Roberto

AU - Jamaluddin, Mohammad

AU - Brasier, Allan R.

PY - 2005/7

Y1 - 2005/7

N2 - A member of the Paramyxoviridae family of RNA viruses, respiratory syncytial virus (RSV), is a leading cause of epidemic respiratory tract infection in children. In children, RSV primarily replicates in the airway mucosa, a process that alters epithelial cell chemokine expression, thereby inducing airway inflammation. We investigated the role of the mitogen-activated protein kinase kinase kinase 14/NF-κB-inducing kinase (NIK) in the activation of NF-κB-dependent genes in alveolus-like A549 cells. RSV infection induces a time dependent increase of NIK mRNA and protein expression that peaks 12 to 24 h after viral exposure. Immunoprecipitation kinase assays indicate that NIK kinase activity is activated even more rapidly (within 6 h of RSV adsorption) associated with an endogenous ∼50-kDa NF-κB2 substrate. Because NIK associates with IKKα to mediate processing of the 100-kDa NF-κB2 precursor into its 52-kDa DNA binding isoform ("p52"), the effects of RSV on NIK complex formation with IKKα and NF-κB2 were determined by coimmunoprecipitation assay. We find that NIK, IKKα, and both 100 kDa- and 52-kDa NF-κB2 isoforms strongly complex 15 h after exposure to RSV at times subsequent to NIK kinase activation. Western immunoblot and microaffinity DNA pull-down assays showed a parallel increase in nuclear translocation and DNA binding of the NF-κB2-Rel B complex. Interestingly, we make the novel observations that NIK also transiently translocates into the nucleus complexed with 52-kDa NF-κB2. Small interfering RNA-mediated NIK "knock-down" blocked RSV-inducible 52-kDa NF-κB2 processing and interfered with the early activation of a subset of NF-κB-dependent genes, indicating the importance of this activation pathway in the genomic NF-κB response to RSV. Together, these data indicate that RSV infection rapidly activates the noncanonical NF-κB activation pathway prior to the more potent canonical pathway activation. This appears to be through a novel mechanism involving induction of NIK kinase activity, expression, and nuclear translocation of a ternary complex with IKKα and processed NF-κB2.

AB - A member of the Paramyxoviridae family of RNA viruses, respiratory syncytial virus (RSV), is a leading cause of epidemic respiratory tract infection in children. In children, RSV primarily replicates in the airway mucosa, a process that alters epithelial cell chemokine expression, thereby inducing airway inflammation. We investigated the role of the mitogen-activated protein kinase kinase kinase 14/NF-κB-inducing kinase (NIK) in the activation of NF-κB-dependent genes in alveolus-like A549 cells. RSV infection induces a time dependent increase of NIK mRNA and protein expression that peaks 12 to 24 h after viral exposure. Immunoprecipitation kinase assays indicate that NIK kinase activity is activated even more rapidly (within 6 h of RSV adsorption) associated with an endogenous ∼50-kDa NF-κB2 substrate. Because NIK associates with IKKα to mediate processing of the 100-kDa NF-κB2 precursor into its 52-kDa DNA binding isoform ("p52"), the effects of RSV on NIK complex formation with IKKα and NF-κB2 were determined by coimmunoprecipitation assay. We find that NIK, IKKα, and both 100 kDa- and 52-kDa NF-κB2 isoforms strongly complex 15 h after exposure to RSV at times subsequent to NIK kinase activation. Western immunoblot and microaffinity DNA pull-down assays showed a parallel increase in nuclear translocation and DNA binding of the NF-κB2-Rel B complex. Interestingly, we make the novel observations that NIK also transiently translocates into the nucleus complexed with 52-kDa NF-κB2. Small interfering RNA-mediated NIK "knock-down" blocked RSV-inducible 52-kDa NF-κB2 processing and interfered with the early activation of a subset of NF-κB-dependent genes, indicating the importance of this activation pathway in the genomic NF-κB response to RSV. Together, these data indicate that RSV infection rapidly activates the noncanonical NF-κB activation pathway prior to the more potent canonical pathway activation. This appears to be through a novel mechanism involving induction of NIK kinase activity, expression, and nuclear translocation of a ternary complex with IKKα and processed NF-κB2.

UR - http://www.scopus.com/inward/record.url?scp=21644463312&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=21644463312&partnerID=8YFLogxK

U2 - 10.1128/JVI.79.14.8948-8959.2005

DO - 10.1128/JVI.79.14.8948-8959.2005

M3 - Article

VL - 79

SP - 8948

EP - 8959

JO - Journal of Virology

JF - Journal of Virology

SN - 0022-538X

IS - 14

ER -