Resuscitation of severe thermal injury with hypertonic saline dextran

Effects on peripheral and visceral edema in sheep

Michael Kinsky, Steve M. Milner, Brian Button, Michael A. Dubick, George Kramer

Research output: Contribution to journalArticle

35 Citations (Scopus)

Abstract

Background: Edema of tissue not directly injured by heat is a common complication after resuscitation of burn shock. Hypertonic 7.5% NaCl 6% dextran (HSD) infusion reduces early fluid requirements in burn shock, but the effects of HSD on peripheral and visceral tissue edema are not well-defined. Methods: We measured the micro-circulatory absorptive pressures of burned and nonburned skin and tissue water content of skin and other tissues in anesthetized sheep after 70% to 85% total body surface area scald and resuscitation. Fluid infusion was initiated 30 minutes after injury using 10 mL/kg HSD (n = 11) or lactated Ringer's (LR) (n = 12), with infusion rates titrated to restore and maintain preburn oxygen delivery (Do2). Thereafter, both groups received LR infusions as needed to maintain Do2 until the study's end at 8 hours. Colloid osmotic pressure was measured in plasma, and combined interstitial colloid osmotic and hydrostatic pressures were measured in skin. Results: Both treatments successfully restored Do2, but fluid requirements were less with the HSD group than with the LR group (43 ± 19 mL/kg vs. 194 ± 38 mL/ kg, respectively, p < 0.05). The peripheral and visceral tissue water contents at 8 hours postinjury until the end of the study in both burn groups were significantly higher than in nonburn controls. However, HSD-treated sheep had significantly less water content in the colon (↓ 28%), liver (↓ 9%), pancreas (↓ 55%), skeletal muscle (↓ 21%), and nonburned skin (12%) compared with LR-treated sheep (p < 0.05 for each). HSD-treated sheep maintained significantly higher (3 to 5 mm Hg) plasma colloid osmotic pressure than LR-treated sheep. Conclusion: There were no observed differences in edema in burn skin between the two treatment groups. The early volume-sparing effect of HSD and reduction in tissue edema are likely attributed to an increased extracellular osmolarity and a better maintenance of the plasma oncotic pressure.

Original languageEnglish (US)
Pages (from-to)844-853
Number of pages10
JournalJournal of Trauma - Injury, Infection and Critical Care
Volume49
Issue number5
StatePublished - 2000

Fingerprint

dextran - saline drug combination
Resuscitation
Edema
Sheep
Hot Temperature
Osmotic Pressure
Wounds and Injuries
Colloids
Skin
Water
Shock
Pressure
Hydrostatic Pressure
Body Surface Area
Dextrans
Osmolar Concentration
Pancreas
Colon
Skeletal Muscle
Maintenance

ASJC Scopus subject areas

  • Surgery

Cite this

Resuscitation of severe thermal injury with hypertonic saline dextran : Effects on peripheral and visceral edema in sheep. / Kinsky, Michael; Milner, Steve M.; Button, Brian; Dubick, Michael A.; Kramer, George.

In: Journal of Trauma - Injury, Infection and Critical Care, Vol. 49, No. 5, 2000, p. 844-853.

Research output: Contribution to journalArticle

@article{9c0e6c965e0a4d8da4b403b9cf2f7b51,
title = "Resuscitation of severe thermal injury with hypertonic saline dextran: Effects on peripheral and visceral edema in sheep",
abstract = "Background: Edema of tissue not directly injured by heat is a common complication after resuscitation of burn shock. Hypertonic 7.5{\%} NaCl 6{\%} dextran (HSD) infusion reduces early fluid requirements in burn shock, but the effects of HSD on peripheral and visceral tissue edema are not well-defined. Methods: We measured the micro-circulatory absorptive pressures of burned and nonburned skin and tissue water content of skin and other tissues in anesthetized sheep after 70{\%} to 85{\%} total body surface area scald and resuscitation. Fluid infusion was initiated 30 minutes after injury using 10 mL/kg HSD (n = 11) or lactated Ringer's (LR) (n = 12), with infusion rates titrated to restore and maintain preburn oxygen delivery (Do2). Thereafter, both groups received LR infusions as needed to maintain Do2 until the study's end at 8 hours. Colloid osmotic pressure was measured in plasma, and combined interstitial colloid osmotic and hydrostatic pressures were measured in skin. Results: Both treatments successfully restored Do2, but fluid requirements were less with the HSD group than with the LR group (43 ± 19 mL/kg vs. 194 ± 38 mL/ kg, respectively, p < 0.05). The peripheral and visceral tissue water contents at 8 hours postinjury until the end of the study in both burn groups were significantly higher than in nonburn controls. However, HSD-treated sheep had significantly less water content in the colon (↓ 28{\%}), liver (↓ 9{\%}), pancreas (↓ 55{\%}), skeletal muscle (↓ 21{\%}), and nonburned skin (12{\%}) compared with LR-treated sheep (p < 0.05 for each). HSD-treated sheep maintained significantly higher (3 to 5 mm Hg) plasma colloid osmotic pressure than LR-treated sheep. Conclusion: There were no observed differences in edema in burn skin between the two treatment groups. The early volume-sparing effect of HSD and reduction in tissue edema are likely attributed to an increased extracellular osmolarity and a better maintenance of the plasma oncotic pressure.",
author = "Michael Kinsky and Milner, {Steve M.} and Brian Button and Dubick, {Michael A.} and George Kramer",
year = "2000",
language = "English (US)",
volume = "49",
pages = "844--853",
journal = "Journal of Trauma and Acute Care Surgery",
issn = "2163-0755",
publisher = "Lippincott Williams and Wilkins",
number = "5",

}

TY - JOUR

T1 - Resuscitation of severe thermal injury with hypertonic saline dextran

T2 - Effects on peripheral and visceral edema in sheep

AU - Kinsky, Michael

AU - Milner, Steve M.

AU - Button, Brian

AU - Dubick, Michael A.

AU - Kramer, George

PY - 2000

Y1 - 2000

N2 - Background: Edema of tissue not directly injured by heat is a common complication after resuscitation of burn shock. Hypertonic 7.5% NaCl 6% dextran (HSD) infusion reduces early fluid requirements in burn shock, but the effects of HSD on peripheral and visceral tissue edema are not well-defined. Methods: We measured the micro-circulatory absorptive pressures of burned and nonburned skin and tissue water content of skin and other tissues in anesthetized sheep after 70% to 85% total body surface area scald and resuscitation. Fluid infusion was initiated 30 minutes after injury using 10 mL/kg HSD (n = 11) or lactated Ringer's (LR) (n = 12), with infusion rates titrated to restore and maintain preburn oxygen delivery (Do2). Thereafter, both groups received LR infusions as needed to maintain Do2 until the study's end at 8 hours. Colloid osmotic pressure was measured in plasma, and combined interstitial colloid osmotic and hydrostatic pressures were measured in skin. Results: Both treatments successfully restored Do2, but fluid requirements were less with the HSD group than with the LR group (43 ± 19 mL/kg vs. 194 ± 38 mL/ kg, respectively, p < 0.05). The peripheral and visceral tissue water contents at 8 hours postinjury until the end of the study in both burn groups were significantly higher than in nonburn controls. However, HSD-treated sheep had significantly less water content in the colon (↓ 28%), liver (↓ 9%), pancreas (↓ 55%), skeletal muscle (↓ 21%), and nonburned skin (12%) compared with LR-treated sheep (p < 0.05 for each). HSD-treated sheep maintained significantly higher (3 to 5 mm Hg) plasma colloid osmotic pressure than LR-treated sheep. Conclusion: There were no observed differences in edema in burn skin between the two treatment groups. The early volume-sparing effect of HSD and reduction in tissue edema are likely attributed to an increased extracellular osmolarity and a better maintenance of the plasma oncotic pressure.

AB - Background: Edema of tissue not directly injured by heat is a common complication after resuscitation of burn shock. Hypertonic 7.5% NaCl 6% dextran (HSD) infusion reduces early fluid requirements in burn shock, but the effects of HSD on peripheral and visceral tissue edema are not well-defined. Methods: We measured the micro-circulatory absorptive pressures of burned and nonburned skin and tissue water content of skin and other tissues in anesthetized sheep after 70% to 85% total body surface area scald and resuscitation. Fluid infusion was initiated 30 minutes after injury using 10 mL/kg HSD (n = 11) or lactated Ringer's (LR) (n = 12), with infusion rates titrated to restore and maintain preburn oxygen delivery (Do2). Thereafter, both groups received LR infusions as needed to maintain Do2 until the study's end at 8 hours. Colloid osmotic pressure was measured in plasma, and combined interstitial colloid osmotic and hydrostatic pressures were measured in skin. Results: Both treatments successfully restored Do2, but fluid requirements were less with the HSD group than with the LR group (43 ± 19 mL/kg vs. 194 ± 38 mL/ kg, respectively, p < 0.05). The peripheral and visceral tissue water contents at 8 hours postinjury until the end of the study in both burn groups were significantly higher than in nonburn controls. However, HSD-treated sheep had significantly less water content in the colon (↓ 28%), liver (↓ 9%), pancreas (↓ 55%), skeletal muscle (↓ 21%), and nonburned skin (12%) compared with LR-treated sheep (p < 0.05 for each). HSD-treated sheep maintained significantly higher (3 to 5 mm Hg) plasma colloid osmotic pressure than LR-treated sheep. Conclusion: There were no observed differences in edema in burn skin between the two treatment groups. The early volume-sparing effect of HSD and reduction in tissue edema are likely attributed to an increased extracellular osmolarity and a better maintenance of the plasma oncotic pressure.

UR - http://www.scopus.com/inward/record.url?scp=0033670416&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033670416&partnerID=8YFLogxK

M3 - Article

VL - 49

SP - 844

EP - 853

JO - Journal of Trauma and Acute Care Surgery

JF - Journal of Trauma and Acute Care Surgery

SN - 2163-0755

IS - 5

ER -