Rigidity sensing at the leading edge through αvβ3 integrins and RPTPα

Guoying Jiang, Angela H. Huang, Yunfei Cai, Monica Tanase, Michael P. Sheetz

Research output: Contribution to journalArticlepeer-review

205 Scopus citations

Abstract

Cells require optimal substrate stiffness for normal function and differentiation. The mechanisms for sensing matrix rigidity and durotaxis, however, are not clear. Here we showed that control, Shp2-/-, integrin β1-/-, and talin1-/- cell lines all spread to a threefold greater area on fibronectin (FN)-coated rigid polyacrylamide surfaces than soft. In contrast, RPTPα-/- cells spread to the same area irrespective of rigidity on FN surfaces but spread 3x greater on rigid collagen IV-coated surfaces than soft. RPTPα and αvβ3 integrins were shown previously to be colocalized at leading edges and antibodies to αvβ3 blocked FN rigidity sensing. When FN beads were held with a rigid laser trap at the leading edge, stronger bonds to the cytoskeleton formed than when held with a soft trap; whereas back from the leading edge and in RPTPα-/- cells, weaker bonds were formed with both rigid and soft laser traps. From the rigidity of the trap, we calculate that a force of 10 pN generated in 1 s is sufficient to activate the rigidity response. We suggest that RPTPα and αvβ3 at the leading edge are critical elements for sensing FN matrix rigidity possibly through SFK activation at the edge and downstream signaling.

Original languageEnglish (US)
Pages (from-to)1804-1809
Number of pages6
JournalBiophysical journal
Volume90
Issue number5
DOIs
StatePublished - Mar 2006
Externally publishedYes

ASJC Scopus subject areas

  • Biophysics

Fingerprint

Dive into the research topics of 'Rigidity sensing at the leading edge through αvβ3 integrins and RPTPα'. Together they form a unique fingerprint.

Cite this