Role of poly-ADP ribosyltransferase activation in the vascular contractile and energetic failure elicited by exogenous and endogenous nitric oxide and peroxynitrite

Csaba Szabo, Basilia Zingarelli, Andrew L. Salzman

Research output: Contribution to journalArticle

227 Citations (Scopus)

Abstract

Stimulation of vascular smooth muscle with bacterial lipopolysaccharide (LPS) and proinflammatory cytokines induces the expression of a distinct isoform of NO synthase (inducible NOS [iNOS]) contribution to the suppression of vascular contractility. We have obtained evidence of the involvement of an indirect pathway triggered by NO and its reaction product peroxynitrite (ONOO-) through the activation of the nuclear enzyme poly-ADP ribosyltransferase (PARS) in the pathogenesis of cellular energetic and contractile failure in vascular smooth muscle. Exposure of vascular smooth muscle cells caused DNA strand breaks, activation of PARS, depletion of NAD+, and inhibition of mitochondrial respiration. The NAD+ depletion and inhibition of mitochondrial respiration were reduced by pharmacological inhibition of PARS. Stimulation of vascular smooth muscle cells with LPS and interferon gamma (IFN-γ) triggered the production of superoxide anion over 3 to 48 hours and NO and ONOO- over 24 to 48 hours and resulted in significant DNA strand breakage. The decreased in mitochondrial respiration in response to LPS and IFN-γ stimulation was inhibited by the ONOO- scavenger uric acid (100 μmol/L) and by inhibitors of iNOS. The PARS inhibitors 3-aminobenzamide (1 mmol/L), nicotinamide (1 mmol/L), and PD 128763 (100 μmol/L) inhibited the reduction in cellular NAD+ and ATP and the suppression of mitochondrial respiration in response to LPS and IFN-γ stimulation. Administration of 3- aminobenzamide also reduced PARS activation and vascular hyporeactivity of rat thoracic aortas exposed to ONOO- (300 μmol/L to 1.5 mmol/L) in vitro. 3-Aminobenzamide (10 mg/kg IP) preserved the ex vivo contractility of aortas obtained from endotoxic rats and improved survival in lethal murine endotoxic shock. These data suggest that PARS activation due to iNOS induction (1) is involved in the energetic depletion of vascular smooth muscle cells that express iNOS and (2) contributes to the pathogenesis of vascular energetic and contractile failure in endotoxic shock. Inhibition of PARS may be a novel concept of therapeutic potential in shock.

Original languageEnglish (US)
Pages (from-to)1051-1063
Number of pages13
JournalCirculation Research
Volume78
Issue number6
StatePublished - Jun 1996
Externally publishedYes

Fingerprint

ADP Ribose Transferases
Peroxynitrous Acid
Blood Vessels
Nitric Oxide
Vascular Smooth Muscle
Lipopolysaccharides
Respiration
Interferon-gamma
Smooth Muscle Myocytes
Septic Shock
NAD
DNA Breaks
Enzyme Activation
Niacinamide
Uric Acid
Thoracic Aorta
Nitric Oxide Synthase
Superoxides
Aorta
Shock

Keywords

  • contraction
  • endotoxin
  • hyporeactivity
  • inflammation
  • septic shock

ASJC Scopus subject areas

  • Physiology
  • Cardiology and Cardiovascular Medicine

Cite this

Role of poly-ADP ribosyltransferase activation in the vascular contractile and energetic failure elicited by exogenous and endogenous nitric oxide and peroxynitrite. / Szabo, Csaba; Zingarelli, Basilia; Salzman, Andrew L.

In: Circulation Research, Vol. 78, No. 6, 06.1996, p. 1051-1063.

Research output: Contribution to journalArticle

@article{c66eb7994ea542c98d1a282cfd1bec30,
title = "Role of poly-ADP ribosyltransferase activation in the vascular contractile and energetic failure elicited by exogenous and endogenous nitric oxide and peroxynitrite",
abstract = "Stimulation of vascular smooth muscle with bacterial lipopolysaccharide (LPS) and proinflammatory cytokines induces the expression of a distinct isoform of NO synthase (inducible NOS [iNOS]) contribution to the suppression of vascular contractility. We have obtained evidence of the involvement of an indirect pathway triggered by NO and its reaction product peroxynitrite (ONOO-) through the activation of the nuclear enzyme poly-ADP ribosyltransferase (PARS) in the pathogenesis of cellular energetic and contractile failure in vascular smooth muscle. Exposure of vascular smooth muscle cells caused DNA strand breaks, activation of PARS, depletion of NAD+, and inhibition of mitochondrial respiration. The NAD+ depletion and inhibition of mitochondrial respiration were reduced by pharmacological inhibition of PARS. Stimulation of vascular smooth muscle cells with LPS and interferon gamma (IFN-γ) triggered the production of superoxide anion over 3 to 48 hours and NO and ONOO- over 24 to 48 hours and resulted in significant DNA strand breakage. The decreased in mitochondrial respiration in response to LPS and IFN-γ stimulation was inhibited by the ONOO- scavenger uric acid (100 μmol/L) and by inhibitors of iNOS. The PARS inhibitors 3-aminobenzamide (1 mmol/L), nicotinamide (1 mmol/L), and PD 128763 (100 μmol/L) inhibited the reduction in cellular NAD+ and ATP and the suppression of mitochondrial respiration in response to LPS and IFN-γ stimulation. Administration of 3- aminobenzamide also reduced PARS activation and vascular hyporeactivity of rat thoracic aortas exposed to ONOO- (300 μmol/L to 1.5 mmol/L) in vitro. 3-Aminobenzamide (10 mg/kg IP) preserved the ex vivo contractility of aortas obtained from endotoxic rats and improved survival in lethal murine endotoxic shock. These data suggest that PARS activation due to iNOS induction (1) is involved in the energetic depletion of vascular smooth muscle cells that express iNOS and (2) contributes to the pathogenesis of vascular energetic and contractile failure in endotoxic shock. Inhibition of PARS may be a novel concept of therapeutic potential in shock.",
keywords = "contraction, endotoxin, hyporeactivity, inflammation, septic shock",
author = "Csaba Szabo and Basilia Zingarelli and Salzman, {Andrew L.}",
year = "1996",
month = "6",
language = "English (US)",
volume = "78",
pages = "1051--1063",
journal = "Circulation Research",
issn = "0009-7330",
publisher = "Lippincott Williams and Wilkins",
number = "6",

}

TY - JOUR

T1 - Role of poly-ADP ribosyltransferase activation in the vascular contractile and energetic failure elicited by exogenous and endogenous nitric oxide and peroxynitrite

AU - Szabo, Csaba

AU - Zingarelli, Basilia

AU - Salzman, Andrew L.

PY - 1996/6

Y1 - 1996/6

N2 - Stimulation of vascular smooth muscle with bacterial lipopolysaccharide (LPS) and proinflammatory cytokines induces the expression of a distinct isoform of NO synthase (inducible NOS [iNOS]) contribution to the suppression of vascular contractility. We have obtained evidence of the involvement of an indirect pathway triggered by NO and its reaction product peroxynitrite (ONOO-) through the activation of the nuclear enzyme poly-ADP ribosyltransferase (PARS) in the pathogenesis of cellular energetic and contractile failure in vascular smooth muscle. Exposure of vascular smooth muscle cells caused DNA strand breaks, activation of PARS, depletion of NAD+, and inhibition of mitochondrial respiration. The NAD+ depletion and inhibition of mitochondrial respiration were reduced by pharmacological inhibition of PARS. Stimulation of vascular smooth muscle cells with LPS and interferon gamma (IFN-γ) triggered the production of superoxide anion over 3 to 48 hours and NO and ONOO- over 24 to 48 hours and resulted in significant DNA strand breakage. The decreased in mitochondrial respiration in response to LPS and IFN-γ stimulation was inhibited by the ONOO- scavenger uric acid (100 μmol/L) and by inhibitors of iNOS. The PARS inhibitors 3-aminobenzamide (1 mmol/L), nicotinamide (1 mmol/L), and PD 128763 (100 μmol/L) inhibited the reduction in cellular NAD+ and ATP and the suppression of mitochondrial respiration in response to LPS and IFN-γ stimulation. Administration of 3- aminobenzamide also reduced PARS activation and vascular hyporeactivity of rat thoracic aortas exposed to ONOO- (300 μmol/L to 1.5 mmol/L) in vitro. 3-Aminobenzamide (10 mg/kg IP) preserved the ex vivo contractility of aortas obtained from endotoxic rats and improved survival in lethal murine endotoxic shock. These data suggest that PARS activation due to iNOS induction (1) is involved in the energetic depletion of vascular smooth muscle cells that express iNOS and (2) contributes to the pathogenesis of vascular energetic and contractile failure in endotoxic shock. Inhibition of PARS may be a novel concept of therapeutic potential in shock.

AB - Stimulation of vascular smooth muscle with bacterial lipopolysaccharide (LPS) and proinflammatory cytokines induces the expression of a distinct isoform of NO synthase (inducible NOS [iNOS]) contribution to the suppression of vascular contractility. We have obtained evidence of the involvement of an indirect pathway triggered by NO and its reaction product peroxynitrite (ONOO-) through the activation of the nuclear enzyme poly-ADP ribosyltransferase (PARS) in the pathogenesis of cellular energetic and contractile failure in vascular smooth muscle. Exposure of vascular smooth muscle cells caused DNA strand breaks, activation of PARS, depletion of NAD+, and inhibition of mitochondrial respiration. The NAD+ depletion and inhibition of mitochondrial respiration were reduced by pharmacological inhibition of PARS. Stimulation of vascular smooth muscle cells with LPS and interferon gamma (IFN-γ) triggered the production of superoxide anion over 3 to 48 hours and NO and ONOO- over 24 to 48 hours and resulted in significant DNA strand breakage. The decreased in mitochondrial respiration in response to LPS and IFN-γ stimulation was inhibited by the ONOO- scavenger uric acid (100 μmol/L) and by inhibitors of iNOS. The PARS inhibitors 3-aminobenzamide (1 mmol/L), nicotinamide (1 mmol/L), and PD 128763 (100 μmol/L) inhibited the reduction in cellular NAD+ and ATP and the suppression of mitochondrial respiration in response to LPS and IFN-γ stimulation. Administration of 3- aminobenzamide also reduced PARS activation and vascular hyporeactivity of rat thoracic aortas exposed to ONOO- (300 μmol/L to 1.5 mmol/L) in vitro. 3-Aminobenzamide (10 mg/kg IP) preserved the ex vivo contractility of aortas obtained from endotoxic rats and improved survival in lethal murine endotoxic shock. These data suggest that PARS activation due to iNOS induction (1) is involved in the energetic depletion of vascular smooth muscle cells that express iNOS and (2) contributes to the pathogenesis of vascular energetic and contractile failure in endotoxic shock. Inhibition of PARS may be a novel concept of therapeutic potential in shock.

KW - contraction

KW - endotoxin

KW - hyporeactivity

KW - inflammation

KW - septic shock

UR - http://www.scopus.com/inward/record.url?scp=0029934194&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0029934194&partnerID=8YFLogxK

M3 - Article

C2 - 8635236

AN - SCOPUS:0029934194

VL - 78

SP - 1051

EP - 1063

JO - Circulation Research

JF - Circulation Research

SN - 0009-7330

IS - 6

ER -