S100A13-C2A binary complex structure-a key component in the acidic fibroblast growth factor for the non-classical pathway

Sepuru K. Mohan, Sandhya Golla, Sriramoju M. Kumar, Chin Yu

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

Fibroblast growth factors (FGFs) are key regulators of cell proliferation, differentiation, tumor-induced angiogenesis and migration. FGFs are essential for early embryonic development, organ formation and angiogenesis. They play important roles in tumor formation, inflammation, wound healing and restenosis. The biological effects of FGFs are mediated through the activation of the four transmembrane phosphotyrosine kinase receptors (FGFRs) in the presence of heparin sulfate proteoglycans (HSPGs) and therefore require the release of FGFs into the extracellular space. However, FGF-1 lacks the signal peptide required for the releasing of these proteins through the classical endoplasmic reticulum (ER)-Golgi secretary pathway. Maciag et al. demonstrated that FGF-1 is exported through a non-classical release pathway involving the formation of a specific multiprotein complex [M. Landriscina, R. Soldi, C. Bagala, I. Micucci, S. Bellum, F. Tarantini, I. Prudovsky, T. Maciag, S100A13 participates in the release of fibroblast growth factor 1 in response to heat shock in vitro, J. Biol. Chem. 276 (2001) 22544-22552; C.M. Carreira, T.M. LaVallee, F. Tarantini, A. Jackson, J.T. Lathrop, B. Hampton, W.H. Burgess, T. Maciag, S100A13 is involved in the regulation of fibroblast growth factor-1 and p40 synaptotagmin-1 release in vitro, J. Biol. Chem. 273 (1998) 22224-22231; T.M. LaValle, F. Tarantini, S. Gamble, C.M. Carreira, A. Jackson, T. Maciag, Synaptotagmin-1 is required for fibroblast growth factor-1 release, J. Biol. Chem. 273 (1998) 22217-22223; C. Bagalá, V. Kolev, A. Mandinova, R. Soldi, C. Mouta, I. Graziani, I, Prudovsky, T. Maciag, The alternative translation of synaptotagmin 1 mediates the non-classical release of FGF1, Biochem. Biophys. Res. Commun. 310 (2003) 1041-1047]. The protein constituents of this complex include FGF-1, S100A13 (a Ca2+-binding protein), and the p40 form of synaptotagmin 1 (Syt1). To understand the molecular events in the FGF-1 releasing pathway, we have studied the interactions of S100A13 with C2A by 1H-15N HSQC titration and 3D-filtered NOESY experiments. We characterized the binary complex structure of S100A13-C2A by using a variety of multi-dimensional NMR experiments. This complex acts as a template for FGF-1 dimerization and multiprotein complex formation.

Original languageEnglish (US)
Pages (from-to)514-519
Number of pages6
JournalBiochemical and Biophysical Research Communications
Volume380
Issue number3
DOIs
StatePublished - Mar 13 2009
Externally publishedYes

Fingerprint

Fibroblast Growth Factor 1
Synaptotagmin I
Fibroblast Growth Factors
Multiprotein Complexes
Tumors
Heat-Shock Response
Phosphotyrosine
Dimerization
Cell proliferation
Extracellular Space
Protein Sorting Signals
Titration
Endoplasmic Reticulum
Wound Healing
Embryonic Development
Cell Differentiation
Neoplasms
Carrier Proteins
Proteins
Phosphotransferases

Keywords

  • Acidic fibroblast growth factor
  • ARIA/CNS
  • HADDOCK
  • Non-classical pathway
  • S100A13
  • S100A13-C2A binary complex
  • Synaptotagmin

ASJC Scopus subject areas

  • Biochemistry
  • Biophysics
  • Cell Biology
  • Molecular Biology

Cite this

S100A13-C2A binary complex structure-a key component in the acidic fibroblast growth factor for the non-classical pathway. / Mohan, Sepuru K.; Golla, Sandhya; Kumar, Sriramoju M.; Yu, Chin.

In: Biochemical and Biophysical Research Communications, Vol. 380, No. 3, 13.03.2009, p. 514-519.

Research output: Contribution to journalArticle

@article{a0f1dc60bb9d4522bd24302b9b73e065,
title = "S100A13-C2A binary complex structure-a key component in the acidic fibroblast growth factor for the non-classical pathway",
abstract = "Fibroblast growth factors (FGFs) are key regulators of cell proliferation, differentiation, tumor-induced angiogenesis and migration. FGFs are essential for early embryonic development, organ formation and angiogenesis. They play important roles in tumor formation, inflammation, wound healing and restenosis. The biological effects of FGFs are mediated through the activation of the four transmembrane phosphotyrosine kinase receptors (FGFRs) in the presence of heparin sulfate proteoglycans (HSPGs) and therefore require the release of FGFs into the extracellular space. However, FGF-1 lacks the signal peptide required for the releasing of these proteins through the classical endoplasmic reticulum (ER)-Golgi secretary pathway. Maciag et al. demonstrated that FGF-1 is exported through a non-classical release pathway involving the formation of a specific multiprotein complex [M. Landriscina, R. Soldi, C. Bagala, I. Micucci, S. Bellum, F. Tarantini, I. Prudovsky, T. Maciag, S100A13 participates in the release of fibroblast growth factor 1 in response to heat shock in vitro, J. Biol. Chem. 276 (2001) 22544-22552; C.M. Carreira, T.M. LaVallee, F. Tarantini, A. Jackson, J.T. Lathrop, B. Hampton, W.H. Burgess, T. Maciag, S100A13 is involved in the regulation of fibroblast growth factor-1 and p40 synaptotagmin-1 release in vitro, J. Biol. Chem. 273 (1998) 22224-22231; T.M. LaValle, F. Tarantini, S. Gamble, C.M. Carreira, A. Jackson, T. Maciag, Synaptotagmin-1 is required for fibroblast growth factor-1 release, J. Biol. Chem. 273 (1998) 22217-22223; C. Bagal{\'a}, V. Kolev, A. Mandinova, R. Soldi, C. Mouta, I. Graziani, I, Prudovsky, T. Maciag, The alternative translation of synaptotagmin 1 mediates the non-classical release of FGF1, Biochem. Biophys. Res. Commun. 310 (2003) 1041-1047]. The protein constituents of this complex include FGF-1, S100A13 (a Ca2+-binding protein), and the p40 form of synaptotagmin 1 (Syt1). To understand the molecular events in the FGF-1 releasing pathway, we have studied the interactions of S100A13 with C2A by 1H-15N HSQC titration and 3D-filtered NOESY experiments. We characterized the binary complex structure of S100A13-C2A by using a variety of multi-dimensional NMR experiments. This complex acts as a template for FGF-1 dimerization and multiprotein complex formation.",
keywords = "Acidic fibroblast growth factor, ARIA/CNS, HADDOCK, Non-classical pathway, S100A13, S100A13-C2A binary complex, Synaptotagmin",
author = "Mohan, {Sepuru K.} and Sandhya Golla and Kumar, {Sriramoju M.} and Chin Yu",
year = "2009",
month = "3",
day = "13",
doi = "10.1016/j.bbrc.2009.01.143",
language = "English (US)",
volume = "380",
pages = "514--519",
journal = "Biochemical and Biophysical Research Communications",
issn = "0006-291X",
publisher = "Academic Press Inc.",
number = "3",

}

TY - JOUR

T1 - S100A13-C2A binary complex structure-a key component in the acidic fibroblast growth factor for the non-classical pathway

AU - Mohan, Sepuru K.

AU - Golla, Sandhya

AU - Kumar, Sriramoju M.

AU - Yu, Chin

PY - 2009/3/13

Y1 - 2009/3/13

N2 - Fibroblast growth factors (FGFs) are key regulators of cell proliferation, differentiation, tumor-induced angiogenesis and migration. FGFs are essential for early embryonic development, organ formation and angiogenesis. They play important roles in tumor formation, inflammation, wound healing and restenosis. The biological effects of FGFs are mediated through the activation of the four transmembrane phosphotyrosine kinase receptors (FGFRs) in the presence of heparin sulfate proteoglycans (HSPGs) and therefore require the release of FGFs into the extracellular space. However, FGF-1 lacks the signal peptide required for the releasing of these proteins through the classical endoplasmic reticulum (ER)-Golgi secretary pathway. Maciag et al. demonstrated that FGF-1 is exported through a non-classical release pathway involving the formation of a specific multiprotein complex [M. Landriscina, R. Soldi, C. Bagala, I. Micucci, S. Bellum, F. Tarantini, I. Prudovsky, T. Maciag, S100A13 participates in the release of fibroblast growth factor 1 in response to heat shock in vitro, J. Biol. Chem. 276 (2001) 22544-22552; C.M. Carreira, T.M. LaVallee, F. Tarantini, A. Jackson, J.T. Lathrop, B. Hampton, W.H. Burgess, T. Maciag, S100A13 is involved in the regulation of fibroblast growth factor-1 and p40 synaptotagmin-1 release in vitro, J. Biol. Chem. 273 (1998) 22224-22231; T.M. LaValle, F. Tarantini, S. Gamble, C.M. Carreira, A. Jackson, T. Maciag, Synaptotagmin-1 is required for fibroblast growth factor-1 release, J. Biol. Chem. 273 (1998) 22217-22223; C. Bagalá, V. Kolev, A. Mandinova, R. Soldi, C. Mouta, I. Graziani, I, Prudovsky, T. Maciag, The alternative translation of synaptotagmin 1 mediates the non-classical release of FGF1, Biochem. Biophys. Res. Commun. 310 (2003) 1041-1047]. The protein constituents of this complex include FGF-1, S100A13 (a Ca2+-binding protein), and the p40 form of synaptotagmin 1 (Syt1). To understand the molecular events in the FGF-1 releasing pathway, we have studied the interactions of S100A13 with C2A by 1H-15N HSQC titration and 3D-filtered NOESY experiments. We characterized the binary complex structure of S100A13-C2A by using a variety of multi-dimensional NMR experiments. This complex acts as a template for FGF-1 dimerization and multiprotein complex formation.

AB - Fibroblast growth factors (FGFs) are key regulators of cell proliferation, differentiation, tumor-induced angiogenesis and migration. FGFs are essential for early embryonic development, organ formation and angiogenesis. They play important roles in tumor formation, inflammation, wound healing and restenosis. The biological effects of FGFs are mediated through the activation of the four transmembrane phosphotyrosine kinase receptors (FGFRs) in the presence of heparin sulfate proteoglycans (HSPGs) and therefore require the release of FGFs into the extracellular space. However, FGF-1 lacks the signal peptide required for the releasing of these proteins through the classical endoplasmic reticulum (ER)-Golgi secretary pathway. Maciag et al. demonstrated that FGF-1 is exported through a non-classical release pathway involving the formation of a specific multiprotein complex [M. Landriscina, R. Soldi, C. Bagala, I. Micucci, S. Bellum, F. Tarantini, I. Prudovsky, T. Maciag, S100A13 participates in the release of fibroblast growth factor 1 in response to heat shock in vitro, J. Biol. Chem. 276 (2001) 22544-22552; C.M. Carreira, T.M. LaVallee, F. Tarantini, A. Jackson, J.T. Lathrop, B. Hampton, W.H. Burgess, T. Maciag, S100A13 is involved in the regulation of fibroblast growth factor-1 and p40 synaptotagmin-1 release in vitro, J. Biol. Chem. 273 (1998) 22224-22231; T.M. LaValle, F. Tarantini, S. Gamble, C.M. Carreira, A. Jackson, T. Maciag, Synaptotagmin-1 is required for fibroblast growth factor-1 release, J. Biol. Chem. 273 (1998) 22217-22223; C. Bagalá, V. Kolev, A. Mandinova, R. Soldi, C. Mouta, I. Graziani, I, Prudovsky, T. Maciag, The alternative translation of synaptotagmin 1 mediates the non-classical release of FGF1, Biochem. Biophys. Res. Commun. 310 (2003) 1041-1047]. The protein constituents of this complex include FGF-1, S100A13 (a Ca2+-binding protein), and the p40 form of synaptotagmin 1 (Syt1). To understand the molecular events in the FGF-1 releasing pathway, we have studied the interactions of S100A13 with C2A by 1H-15N HSQC titration and 3D-filtered NOESY experiments. We characterized the binary complex structure of S100A13-C2A by using a variety of multi-dimensional NMR experiments. This complex acts as a template for FGF-1 dimerization and multiprotein complex formation.

KW - Acidic fibroblast growth factor

KW - ARIA/CNS

KW - HADDOCK

KW - Non-classical pathway

KW - S100A13

KW - S100A13-C2A binary complex

KW - Synaptotagmin

UR - http://www.scopus.com/inward/record.url?scp=60549089016&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=60549089016&partnerID=8YFLogxK

U2 - 10.1016/j.bbrc.2009.01.143

DO - 10.1016/j.bbrc.2009.01.143

M3 - Article

C2 - 19284995

AN - SCOPUS:60549089016

VL - 380

SP - 514

EP - 519

JO - Biochemical and Biophysical Research Communications

JF - Biochemical and Biophysical Research Communications

SN - 0006-291X

IS - 3

ER -