Scattering angle resolved optical coherence tomography detects early changes in 3xTg Alzheimer’s disease mouse model

Michael R. Gardner, Vikram Baruah, Gracie Vargas, Massoud Motamedi, Thomas E. Milner, Henry G. Rylander

Research output: Contribution to journalArticle

Abstract

Purpose: Clinical intensity-based optical coherence tomographic retinal imaging is unable to resolve some of the earliest changes to Alzheimer’s disease (AD) neurons. The aim of this pilot study was to demonstrate that scattering-angle-resolved optical coherence tomography (SAR-OCT), which is sensitive to changes in light scattering angle, is a candidate retinal imaging modality for early AD detection. SAR-OCT signal data may be sensitive to changes in intracellular constituent morphology that are not detectable with conventional OCT.Methods: In this cross-sectional study, retinas of a triple transgenic mouse model of AD (3xTg-AD) were imaged alongside age-matched control mice (C57BL/6J) using SAR-OCT. A total of 32 mice (12 control, 20 3xTg-Ad) at four ages (10, 20, 30, and 45 weeks) were included in this cross-sectional study, and three retinal feature sets (scattering, thickness, and angiography) were examined between the disease and control groups.Results: AD mice had significantly increased scattering diversity (lower SAR-OCT C parameter) at the earliest imaging time (10 weeks). Differences in the C parameter between AD and control mice were diminished at later times when both groups showed increased scattering diversity. AD mice have reduced retinal thickness compared to controls, particularly in central regions and superficial layers. No differences in vascular density or fractional blood volume between groups were detected.Conclusions: SAR-OCT is sensitive to scattering angle changes in a 3xTg-AD mouse model and could provide early-stage biomarkers for neurodegenerative diseases such as AD.Translational Relevance: Clinical OCT systems may be modified to record SAR-OCT images for non-invasive retinal diagnostic imaging of patients with neurodegenerative diseases such as AD.

Original languageEnglish (US)
Article number18
Pages (from-to)1-14
Number of pages14
JournalTranslational Vision Science and Technology
Volume9
Issue number5
DOIs
StatePublished - Apr 2020

Keywords

  • Alzheimer’s disease
  • Light scattering
  • Mouse model
  • Neurodegeneration
  • Optical coherence tomography

ASJC Scopus subject areas

  • Biomedical Engineering
  • Ophthalmology

Fingerprint Dive into the research topics of 'Scattering angle resolved optical coherence tomography detects early changes in 3xTg Alzheimer’s disease mouse model'. Together they form a unique fingerprint.

  • Cite this