TY - JOUR
T1 - Selection of class I MHC-restricted peptides with the strip-of-helix hydrophobicity algorithm
AU - Reyes, Victor E.
AU - Chin, L. Thomas
AU - Humphreys, Robert E.
PY - 1988/9
Y1 - 1988/9
N2 - A strip-of-helix hydrophobicity algorithm to predict class II MHC-restricted peptides, on the basis of their structural similarity to an amphipathic, α -helix in Ii, also predicted peptides which were presented to cytotoxic T-cells by class I MHC molecules. This algorithm ranked peptides according to mean Kyte-Doolittle hydrophobicity values of amino acids at positions n, n + 4, n + 7, n + 11, n + 14 and n + 18 in a sequence which when coiled as a putative α-helix, had the indicated residues in an axial strip along one side of the helix. Sequences selected for highly scoring, hydrophobic strips were required to have at least 1 of the 4 adjacent strips scoring more negatively than -1 in the strip-of-helix hydrophobicity index and the entire sequence could contain no prolines. This algorithm predicted the class I MHC-restricted, T-cell-presented peptides in sequences of 4 proteins from which some class I MHC-restricted, T-cell-presented sequences had been experimentally determined. Since both class I and class II MHC-restricted peptides could be identified with this algorithm, one can propose that: (I) foreign peptide-binding sites (desetopes) of the class I and class II MHC molecules are structurally similar; and (2) any one T-cell-presented peptide can be presented by some specific allele of both a class I and a class II MHC antigen.
AB - A strip-of-helix hydrophobicity algorithm to predict class II MHC-restricted peptides, on the basis of their structural similarity to an amphipathic, α -helix in Ii, also predicted peptides which were presented to cytotoxic T-cells by class I MHC molecules. This algorithm ranked peptides according to mean Kyte-Doolittle hydrophobicity values of amino acids at positions n, n + 4, n + 7, n + 11, n + 14 and n + 18 in a sequence which when coiled as a putative α-helix, had the indicated residues in an axial strip along one side of the helix. Sequences selected for highly scoring, hydrophobic strips were required to have at least 1 of the 4 adjacent strips scoring more negatively than -1 in the strip-of-helix hydrophobicity index and the entire sequence could contain no prolines. This algorithm predicted the class I MHC-restricted, T-cell-presented peptides in sequences of 4 proteins from which some class I MHC-restricted, T-cell-presented sequences had been experimentally determined. Since both class I and class II MHC-restricted peptides could be identified with this algorithm, one can propose that: (I) foreign peptide-binding sites (desetopes) of the class I and class II MHC molecules are structurally similar; and (2) any one T-cell-presented peptide can be presented by some specific allele of both a class I and a class II MHC antigen.
UR - http://www.scopus.com/inward/record.url?scp=0023712880&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0023712880&partnerID=8YFLogxK
U2 - 10.1016/0161-5890(88)90123-X
DO - 10.1016/0161-5890(88)90123-X
M3 - Article
C2 - 3264884
AN - SCOPUS:0023712880
VL - 25
SP - 867
EP - 871
JO - Molecular Immunology
JF - Molecular Immunology
SN - 0161-5890
IS - 9
ER -