TY - JOUR
T1 - Selective incorporation of polyanionic molecules into hamster prions
AU - Geoghegan, James C.
AU - Valdes, Pablo A.
AU - Orem, Nicholas R.
AU - Deleault, Nathan R.
AU - Anthony Williamson, R.
AU - Harris, Brent T.
AU - Supattapone, Surachai
PY - 2007/12/14
Y1 - 2007/12/14
N2 - The central pathogenic event of prion disease is the conformational conversion of a host protein, PrPC, into a pathogenic isoform, PrPSc. We previously showed that the protein misfolding cyclic amplification (PMCA) technique can be used to form infectious prion molecules de novo from purified native PrPC molecules in an autocatalytic process requiring accessory polyanions (Deleault, N. R., Harris, B. T., Rees, J. R., and Supattapone, S. (2007) Proc. Natl. Acad. Sci. U. S. A. 104, 9741-9746). Here we investigated the molecular mechanism by which polyanionic molecules facilitate infectious prion formation in vitro. In a PMCA reaction lacking PrPSc template seed, synthetic poly(A) RNA molecules induce hamster (Ha)PrPC to adopt a protease-sensitive, detergent-insoluble conformation reactive against antibodies specific for PrPSc. During PMCA, labeled nucleic acids form nuclease-resistant complexes with HaPrP molecules. Strikingly, purified HaPrPC molecules subjected to PMCA selectively incorporate an ∼1-2.5-kb subset of [32P]poly(A) RNA molecules from a heterogeneous mixture ranging in size from ∼0.1 to >6 kb. Neuropathological analysis of scrapie-infected hamsters using the fluorescent dye acridine orange revealed that RNA molecules co-localize with large extracellular HaPrP aggregates. These findings suggest that polyanionic molecules such as RNA may become selectively incorporated into stable complexes with PrP molecules during the formation of native hamster prions.
AB - The central pathogenic event of prion disease is the conformational conversion of a host protein, PrPC, into a pathogenic isoform, PrPSc. We previously showed that the protein misfolding cyclic amplification (PMCA) technique can be used to form infectious prion molecules de novo from purified native PrPC molecules in an autocatalytic process requiring accessory polyanions (Deleault, N. R., Harris, B. T., Rees, J. R., and Supattapone, S. (2007) Proc. Natl. Acad. Sci. U. S. A. 104, 9741-9746). Here we investigated the molecular mechanism by which polyanionic molecules facilitate infectious prion formation in vitro. In a PMCA reaction lacking PrPSc template seed, synthetic poly(A) RNA molecules induce hamster (Ha)PrPC to adopt a protease-sensitive, detergent-insoluble conformation reactive against antibodies specific for PrPSc. During PMCA, labeled nucleic acids form nuclease-resistant complexes with HaPrP molecules. Strikingly, purified HaPrPC molecules subjected to PMCA selectively incorporate an ∼1-2.5-kb subset of [32P]poly(A) RNA molecules from a heterogeneous mixture ranging in size from ∼0.1 to >6 kb. Neuropathological analysis of scrapie-infected hamsters using the fluorescent dye acridine orange revealed that RNA molecules co-localize with large extracellular HaPrP aggregates. These findings suggest that polyanionic molecules such as RNA may become selectively incorporated into stable complexes with PrP molecules during the formation of native hamster prions.
UR - http://www.scopus.com/inward/record.url?scp=37549068149&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=37549068149&partnerID=8YFLogxK
U2 - 10.1074/jbc.M704447200
DO - 10.1074/jbc.M704447200
M3 - Article
C2 - 17940287
AN - SCOPUS:37549068149
SN - 0021-9258
VL - 282
SP - 36341
EP - 36353
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 50
ER -