Severe acute respiratory syndrome coronavirus protein nsp1 is a novel eukaryotic translation inhibitor that represses multiple steps of translation initiation

Kumari G. Lokugamage, Krishna Narayanan, Cheng Huang, Shinji Makino

Research output: Contribution to journalArticle

20 Citations (Scopus)

Abstract

Severe acute respiratory syndrome (SARS) coronavirus nonstructural protein 1 (nsp1) binds to the 40S ribosomal subunit and inhibits translation, and it also induces a template-dependent endonucleolytic cleavage of host mRNAs. nsp1 inhibits the translation of cap-dependent and internal ribosome entry site (IRES)-driven mRNAs, including SARS coronavirus mRNAs, hepatitis C virus (HCV), and cricket paralysis virus (CrPV) IRES-driven mRNAs that are resistant to nsp1-induced RNA cleavage. We used an nsp1 mutant, nsp1-CD, lacking the RNA cleavage function, to delineate the mechanism of nsp1-mediated translation inhibition and identify the translation step(s) targeted by nsp1. nsp1 and nsp1-CD had identical inhibitory effects on mRNA templates that are resistant to nsp1-induced RNA cleavage, implying the validity of using nsp1-CD to dissect the translation inhibition function of nsp1. We provide evidence for a novel mode of action of nsp1. nsp1 inhibited the translation initiation step by targeting at least two separate stages: 48S initiation complex formation and the steps involved in the formation of the 80S initiation complex from the 48S complex. nsp1 had a differential, mRNA template-dependent, inhibitory effect on 48S and 80S initiation complex formation. nsp1 inhibited different steps of translation initiation on CrPV and HCV IRES, both of which initiate translation via an IRES-40S binary complex intermediate; nsp1 inhibited binary complex formation on CrPV IRES and 48S complex formation on HCV IRES. Collectively, the data revealed that nsp1 inhibited translation by exerting its effect on multiple stages of translation initiation, depending on the mechanism of initiation operating on the mRNA template.

Original languageEnglish (US)
Pages (from-to)13598-13608
Number of pages11
JournalJournal of Virology
Volume86
Issue number24
DOIs
StatePublished - Dec 2012

Fingerprint

Severe Acute Respiratory Syndrome
translation (genetics)
Proteins
proteins
ribosomes
Cricket paralysis virus
Messenger RNA
RNA Cleavage
Gryllidae
Hepatitis C virus
Paralysis
Hepacivirus
coronavirus nonstructural protein
Severe acute respiratory syndrome coronavirus
Viruses
RNA
Eukaryotic Small Ribosome Subunits
Coronavirus
Mutant Proteins

ASJC Scopus subject areas

  • Immunology
  • Virology

Cite this

Severe acute respiratory syndrome coronavirus protein nsp1 is a novel eukaryotic translation inhibitor that represses multiple steps of translation initiation. / Lokugamage, Kumari G.; Narayanan, Krishna; Huang, Cheng; Makino, Shinji.

In: Journal of Virology, Vol. 86, No. 24, 12.2012, p. 13598-13608.

Research output: Contribution to journalArticle

@article{8e757ba5110e4cacb97896dd1594667f,
title = "Severe acute respiratory syndrome coronavirus protein nsp1 is a novel eukaryotic translation inhibitor that represses multiple steps of translation initiation",
abstract = "Severe acute respiratory syndrome (SARS) coronavirus nonstructural protein 1 (nsp1) binds to the 40S ribosomal subunit and inhibits translation, and it also induces a template-dependent endonucleolytic cleavage of host mRNAs. nsp1 inhibits the translation of cap-dependent and internal ribosome entry site (IRES)-driven mRNAs, including SARS coronavirus mRNAs, hepatitis C virus (HCV), and cricket paralysis virus (CrPV) IRES-driven mRNAs that are resistant to nsp1-induced RNA cleavage. We used an nsp1 mutant, nsp1-CD, lacking the RNA cleavage function, to delineate the mechanism of nsp1-mediated translation inhibition and identify the translation step(s) targeted by nsp1. nsp1 and nsp1-CD had identical inhibitory effects on mRNA templates that are resistant to nsp1-induced RNA cleavage, implying the validity of using nsp1-CD to dissect the translation inhibition function of nsp1. We provide evidence for a novel mode of action of nsp1. nsp1 inhibited the translation initiation step by targeting at least two separate stages: 48S initiation complex formation and the steps involved in the formation of the 80S initiation complex from the 48S complex. nsp1 had a differential, mRNA template-dependent, inhibitory effect on 48S and 80S initiation complex formation. nsp1 inhibited different steps of translation initiation on CrPV and HCV IRES, both of which initiate translation via an IRES-40S binary complex intermediate; nsp1 inhibited binary complex formation on CrPV IRES and 48S complex formation on HCV IRES. Collectively, the data revealed that nsp1 inhibited translation by exerting its effect on multiple stages of translation initiation, depending on the mechanism of initiation operating on the mRNA template.",
author = "Lokugamage, {Kumari G.} and Krishna Narayanan and Cheng Huang and Shinji Makino",
year = "2012",
month = "12",
doi = "10.1128/JVI.01958-12",
language = "English (US)",
volume = "86",
pages = "13598--13608",
journal = "Journal of Virology",
issn = "0022-538X",
publisher = "American Society for Microbiology",
number = "24",

}

TY - JOUR

T1 - Severe acute respiratory syndrome coronavirus protein nsp1 is a novel eukaryotic translation inhibitor that represses multiple steps of translation initiation

AU - Lokugamage, Kumari G.

AU - Narayanan, Krishna

AU - Huang, Cheng

AU - Makino, Shinji

PY - 2012/12

Y1 - 2012/12

N2 - Severe acute respiratory syndrome (SARS) coronavirus nonstructural protein 1 (nsp1) binds to the 40S ribosomal subunit and inhibits translation, and it also induces a template-dependent endonucleolytic cleavage of host mRNAs. nsp1 inhibits the translation of cap-dependent and internal ribosome entry site (IRES)-driven mRNAs, including SARS coronavirus mRNAs, hepatitis C virus (HCV), and cricket paralysis virus (CrPV) IRES-driven mRNAs that are resistant to nsp1-induced RNA cleavage. We used an nsp1 mutant, nsp1-CD, lacking the RNA cleavage function, to delineate the mechanism of nsp1-mediated translation inhibition and identify the translation step(s) targeted by nsp1. nsp1 and nsp1-CD had identical inhibitory effects on mRNA templates that are resistant to nsp1-induced RNA cleavage, implying the validity of using nsp1-CD to dissect the translation inhibition function of nsp1. We provide evidence for a novel mode of action of nsp1. nsp1 inhibited the translation initiation step by targeting at least two separate stages: 48S initiation complex formation and the steps involved in the formation of the 80S initiation complex from the 48S complex. nsp1 had a differential, mRNA template-dependent, inhibitory effect on 48S and 80S initiation complex formation. nsp1 inhibited different steps of translation initiation on CrPV and HCV IRES, both of which initiate translation via an IRES-40S binary complex intermediate; nsp1 inhibited binary complex formation on CrPV IRES and 48S complex formation on HCV IRES. Collectively, the data revealed that nsp1 inhibited translation by exerting its effect on multiple stages of translation initiation, depending on the mechanism of initiation operating on the mRNA template.

AB - Severe acute respiratory syndrome (SARS) coronavirus nonstructural protein 1 (nsp1) binds to the 40S ribosomal subunit and inhibits translation, and it also induces a template-dependent endonucleolytic cleavage of host mRNAs. nsp1 inhibits the translation of cap-dependent and internal ribosome entry site (IRES)-driven mRNAs, including SARS coronavirus mRNAs, hepatitis C virus (HCV), and cricket paralysis virus (CrPV) IRES-driven mRNAs that are resistant to nsp1-induced RNA cleavage. We used an nsp1 mutant, nsp1-CD, lacking the RNA cleavage function, to delineate the mechanism of nsp1-mediated translation inhibition and identify the translation step(s) targeted by nsp1. nsp1 and nsp1-CD had identical inhibitory effects on mRNA templates that are resistant to nsp1-induced RNA cleavage, implying the validity of using nsp1-CD to dissect the translation inhibition function of nsp1. We provide evidence for a novel mode of action of nsp1. nsp1 inhibited the translation initiation step by targeting at least two separate stages: 48S initiation complex formation and the steps involved in the formation of the 80S initiation complex from the 48S complex. nsp1 had a differential, mRNA template-dependent, inhibitory effect on 48S and 80S initiation complex formation. nsp1 inhibited different steps of translation initiation on CrPV and HCV IRES, both of which initiate translation via an IRES-40S binary complex intermediate; nsp1 inhibited binary complex formation on CrPV IRES and 48S complex formation on HCV IRES. Collectively, the data revealed that nsp1 inhibited translation by exerting its effect on multiple stages of translation initiation, depending on the mechanism of initiation operating on the mRNA template.

UR - http://www.scopus.com/inward/record.url?scp=84870710131&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84870710131&partnerID=8YFLogxK

U2 - 10.1128/JVI.01958-12

DO - 10.1128/JVI.01958-12

M3 - Article

VL - 86

SP - 13598

EP - 13608

JO - Journal of Virology

JF - Journal of Virology

SN - 0022-538X

IS - 24

ER -