Shape of tropoelastin, the highly extensible protein that controls human tissue elasticity

Clair Baldock, Andres F. Oberhauser, Liang Ma, Donna Lammie, Veronique Siegler, Suzanne M. Mithieux, Yidong Tu, John Yuen Ho Chow, Farhana Suleman, Marc Malfois, Sarah Rogers, Liang Guo, Thomas C. Irving, Tim J. Wess, Anthony S. Weiss

Research output: Contribution to journalArticlepeer-review

165 Scopus citations

Abstract

Elastin enables the reversible deformation of elastic tissues and can withstand decades of repetitive forces. Tropoelastin is the soluble precursor to elastin, the main elastic protein found in mammals. Little is known of the shape and mechanism of assembly of tropoelastin as its unique composition and propensity to self-associate has hampered structural studies. In this study, we solve the nanostructure of full-length and corresponding overlapping fragments of tropoelastin using small angle X-ray and neutron scattering, allowing us to identify discrete regions of the molecule. Tropoelastin is an asymmetric coil, with a protruding foot that encompasses the C-terminal cell interaction motif. We show that individual tropoelastin molecules are highly extensible yet elastic without hysteresis to perform as highly efficient molecular nanosprings. Our findings shed light on how biology uses this single protein to build durable elastic structures that allow for cell attachment to an appended foot. We present a unique model for head-to-tail assembly which allows for the propagation of the molecule's asymmetric coil through a stacked spring design.

Original languageEnglish (US)
Pages (from-to)4322-4327
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume108
Issue number11
DOIs
StatePublished - Mar 15 2011

Keywords

  • AFM
  • Atomic force microscopy
  • SAXS

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Shape of tropoelastin, the highly extensible protein that controls human tissue elasticity'. Together they form a unique fingerprint.

Cite this