TY - JOUR
T1 - Simvastatin Preserves Cardiac Function in Genetically Determined Cardiomyopathy
AU - Abraham, Seena S.
AU - Osorio, Juan C.
AU - Homma, Shunichi
AU - Wang, Jie
AU - Thaker, Harshwardhan M.
AU - Liao, James K.
AU - Mital, Seema
PY - 2004/3
Y1 - 2004/3
N2 - Endothelial dysfunction characterizes heart failure (HF). Simvastatin (Sim) increases endothelial nitric oxide (NO) independent of lipid-lowering. We evaluated the effect of Sim on cardiac function, apoptosis, and NO availability in HF. Five-month-old cardiomyopathic (CM) hamsters were divided into 2 groups: Sim (20 mg/kg, 6 weeks, n = 6) and Untreated (n = 6). Age-matched normal hamsters served as controls (n = 6). Serial echocardiograms were performed to measure LV function. Myocardial apoptosis, eNOS, and capillary density were measured at 6 weeks. Cardiomyopathic hamsters had lower LV shortening fraction (SF) compared with controls (17% vs 59 ± 2%), higher LV end-diastolic volume (30 ± 3 vs 6 ± 2 mL/m2), and lower LV mass/volume ratio (0.5 ± 0.04 vs 0.72 ± 0.02 mg/ml, P < 0.001). During follow-up, SF decreased (9 ± 2%) and LV volume increased (38 ± 1 mL/m2) in untreated hamsters (P < 0.05 from baseline) but did not change significantly in the Sim group (P < 0.05 vs untreated). Myocardial caspase-3 activity was higher and apoptotic nuclear density was lower in Sim compared with untreated CM hamsters (0.072 ± 0.02% vs 0.107 ± 0.03%, P < 0.01). Myocardial capillary density was highest in the Sim group (P < 0.05). eNOS expression was not different between groups. Sim retards the progression of HF in CM hamsters. This may be related to an increase in coronary microvasculature, increase in NO availability, and decreased apoptosis.
AB - Endothelial dysfunction characterizes heart failure (HF). Simvastatin (Sim) increases endothelial nitric oxide (NO) independent of lipid-lowering. We evaluated the effect of Sim on cardiac function, apoptosis, and NO availability in HF. Five-month-old cardiomyopathic (CM) hamsters were divided into 2 groups: Sim (20 mg/kg, 6 weeks, n = 6) and Untreated (n = 6). Age-matched normal hamsters served as controls (n = 6). Serial echocardiograms were performed to measure LV function. Myocardial apoptosis, eNOS, and capillary density were measured at 6 weeks. Cardiomyopathic hamsters had lower LV shortening fraction (SF) compared with controls (17% vs 59 ± 2%), higher LV end-diastolic volume (30 ± 3 vs 6 ± 2 mL/m2), and lower LV mass/volume ratio (0.5 ± 0.04 vs 0.72 ± 0.02 mg/ml, P < 0.001). During follow-up, SF decreased (9 ± 2%) and LV volume increased (38 ± 1 mL/m2) in untreated hamsters (P < 0.05 from baseline) but did not change significantly in the Sim group (P < 0.05 vs untreated). Myocardial caspase-3 activity was higher and apoptotic nuclear density was lower in Sim compared with untreated CM hamsters (0.072 ± 0.02% vs 0.107 ± 0.03%, P < 0.01). Myocardial capillary density was highest in the Sim group (P < 0.05). eNOS expression was not different between groups. Sim retards the progression of HF in CM hamsters. This may be related to an increase in coronary microvasculature, increase in NO availability, and decreased apoptosis.
KW - Angiogenesis
KW - Heart failure
KW - Nitric oxide
KW - Remodeling
KW - Statins
UR - http://www.scopus.com/inward/record.url?scp=1442276972&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=1442276972&partnerID=8YFLogxK
U2 - 10.1097/00005344-200403000-00018
DO - 10.1097/00005344-200403000-00018
M3 - Article
C2 - 15076231
AN - SCOPUS:1442276972
SN - 0160-2446
VL - 43
SP - 454
EP - 461
JO - Journal of cardiovascular pharmacology
JF - Journal of cardiovascular pharmacology
IS - 3
ER -