Single and combined effects of growth hormone and testosterone administration on measures of body composition, physical performance, mood, sexual function, bone turnover, and muscle gene expression in healthy older men

Kimberly T. Brill, Arthur L. Weltman, Angela Gentili, James T. Patrie, David A. Fryburg, John B. Hanks, Randall Urban, Johannes D. Veldhuis

Research output: Contribution to journalArticle

150 Citations (Scopus)

Abstract

We examined the effects of GH and/or testosterone (T) administration on body composition, performance, mood, sexual function, bone turnover, and muscle-gene expression in healthy older men. Ten men [mean (SEM) age, 68 (2.5) yr; height, 171.5 (2.4) cm; and weight, 80 (3.0) kg] completed each of the following 1-month, double-blind interventions after a baseline (B) study in randomized order with an intervening 3-month washout: transdermal T patch (5.0 mg/daily); recombinant human GH (6.25 μg/kg sc daily); and combined hormones (GHT). ANOVA with repeated measures was used to evaluate interventional effects. Integrated serum GH concentrations [mean (SEM)] were elevated comparably by GH and GHT: [B = 363 (55), GH = 1107 (120), T = 459 (131), and GHT = 1189 (46) μg/liter-min; P < 0.0001]. Serum IGF-I concentrations also increased commensurately after GH and GHT: [B = 168 (14), GH = 285 (16), T = 192 (25), and GHT = 294 (25) μg/liter; P < 0.0001]. GHT administration increased total estradiol: [B = 110 (20), GH = 106 (13), T = 129 (13), and GHT = 153 (17) pmol/liter; P < 0.02], and both T and GHT elevated free T: [B = 12 (2.1), GH = 11 (1.5), T = 22 (2.8), and GHT = 24 (2.5) pg/ml; P < 0.0001]. No significant changes occurred in strength, flexibility, percentage body fat, or sexual function and mood. However, fat-free mass increased under combined GHT exposure: [B = 55 (1.3), GH = 56 (1.1), T = 55 (1.5), GHT = 57 (1.7) kg; P < 0.03]. Balance improved in response to GH intervention (P < 0.05), as did 30-m walk time during T and GHT interventions [B = 6.6 (0.3), GH = 6.2 (0.7), T = 5.9 (0.3), GHT = 5.5 (0.3) sec; P = 0.04] and stair climb time for all three interventions [B = 32.2 (1.4), GH = 29.8 (1.2), T = 30.5 (1.4), and GHT = 29.9 (1.2) sec (P = 0.0034), wherein the effects of GH, T, and GHT were different from that of B]. Muscle IGF-I gene expression increased by 1.9-fold during GH administration and by 2.3-fold during GHT administration (P < 0.05, compared with B). Myostatin and androgen receptor gene expression were not affected. Serum osteocalcin increased in response to the GH and GHT interventions: [B = 4.8 (0.52), GH = 5.7 (0.54), T = 4.7 (0.33), and GHT = 5.5 (0.39); P < 0.009]. There were no significant adverse events during 30 patient-months of intervention. We conclude that 1 month of GH and/or T administration improves certain measures of balance and physical performance in older men and increases muscle IGF-I gene expression.

Original languageEnglish (US)
Pages (from-to)5649-5657
Number of pages9
JournalJournal of Clinical Endocrinology and Metabolism
Volume87
Issue number12
DOIs
StatePublished - Dec 1 2002

Fingerprint

Bone Remodeling
Body Composition
Gene expression
Growth Hormone
Muscle
Testosterone
Bone
Insulin-Like Growth Factor I
Gene Expression
Muscles
Chemical analysis
Serum
Myostatin
Transdermal Patch
Fats
Osteocalcin
Androgen Receptors
Stairs
Scanning electron microscopy
Adipose Tissue

ASJC Scopus subject areas

  • Biochemistry
  • Endocrinology, Diabetes and Metabolism

Cite this

Single and combined effects of growth hormone and testosterone administration on measures of body composition, physical performance, mood, sexual function, bone turnover, and muscle gene expression in healthy older men. / Brill, Kimberly T.; Weltman, Arthur L.; Gentili, Angela; Patrie, James T.; Fryburg, David A.; Hanks, John B.; Urban, Randall; Veldhuis, Johannes D.

In: Journal of Clinical Endocrinology and Metabolism, Vol. 87, No. 12, 01.12.2002, p. 5649-5657.

Research output: Contribution to journalArticle

@article{ecc5ac00bfa4491b91c833ac896dc23e,
title = "Single and combined effects of growth hormone and testosterone administration on measures of body composition, physical performance, mood, sexual function, bone turnover, and muscle gene expression in healthy older men",
abstract = "We examined the effects of GH and/or testosterone (T) administration on body composition, performance, mood, sexual function, bone turnover, and muscle-gene expression in healthy older men. Ten men [mean (SEM) age, 68 (2.5) yr; height, 171.5 (2.4) cm; and weight, 80 (3.0) kg] completed each of the following 1-month, double-blind interventions after a baseline (B) study in randomized order with an intervening 3-month washout: transdermal T patch (5.0 mg/daily); recombinant human GH (6.25 μg/kg sc daily); and combined hormones (GHT). ANOVA with repeated measures was used to evaluate interventional effects. Integrated serum GH concentrations [mean (SEM)] were elevated comparably by GH and GHT: [B = 363 (55), GH = 1107 (120), T = 459 (131), and GHT = 1189 (46) μg/liter-min; P < 0.0001]. Serum IGF-I concentrations also increased commensurately after GH and GHT: [B = 168 (14), GH = 285 (16), T = 192 (25), and GHT = 294 (25) μg/liter; P < 0.0001]. GHT administration increased total estradiol: [B = 110 (20), GH = 106 (13), T = 129 (13), and GHT = 153 (17) pmol/liter; P < 0.02], and both T and GHT elevated free T: [B = 12 (2.1), GH = 11 (1.5), T = 22 (2.8), and GHT = 24 (2.5) pg/ml; P < 0.0001]. No significant changes occurred in strength, flexibility, percentage body fat, or sexual function and mood. However, fat-free mass increased under combined GHT exposure: [B = 55 (1.3), GH = 56 (1.1), T = 55 (1.5), GHT = 57 (1.7) kg; P < 0.03]. Balance improved in response to GH intervention (P < 0.05), as did 30-m walk time during T and GHT interventions [B = 6.6 (0.3), GH = 6.2 (0.7), T = 5.9 (0.3), GHT = 5.5 (0.3) sec; P = 0.04] and stair climb time for all three interventions [B = 32.2 (1.4), GH = 29.8 (1.2), T = 30.5 (1.4), and GHT = 29.9 (1.2) sec (P = 0.0034), wherein the effects of GH, T, and GHT were different from that of B]. Muscle IGF-I gene expression increased by 1.9-fold during GH administration and by 2.3-fold during GHT administration (P < 0.05, compared with B). Myostatin and androgen receptor gene expression were not affected. Serum osteocalcin increased in response to the GH and GHT interventions: [B = 4.8 (0.52), GH = 5.7 (0.54), T = 4.7 (0.33), and GHT = 5.5 (0.39); P < 0.009]. There were no significant adverse events during 30 patient-months of intervention. We conclude that 1 month of GH and/or T administration improves certain measures of balance and physical performance in older men and increases muscle IGF-I gene expression.",
author = "Brill, {Kimberly T.} and Weltman, {Arthur L.} and Angela Gentili and Patrie, {James T.} and Fryburg, {David A.} and Hanks, {John B.} and Randall Urban and Veldhuis, {Johannes D.}",
year = "2002",
month = "12",
day = "1",
doi = "10.1210/jc.2002-020098",
language = "English (US)",
volume = "87",
pages = "5649--5657",
journal = "Journal of Clinical Endocrinology and Metabolism",
issn = "0021-972X",
publisher = "The Endocrine Society",
number = "12",

}

TY - JOUR

T1 - Single and combined effects of growth hormone and testosterone administration on measures of body composition, physical performance, mood, sexual function, bone turnover, and muscle gene expression in healthy older men

AU - Brill, Kimberly T.

AU - Weltman, Arthur L.

AU - Gentili, Angela

AU - Patrie, James T.

AU - Fryburg, David A.

AU - Hanks, John B.

AU - Urban, Randall

AU - Veldhuis, Johannes D.

PY - 2002/12/1

Y1 - 2002/12/1

N2 - We examined the effects of GH and/or testosterone (T) administration on body composition, performance, mood, sexual function, bone turnover, and muscle-gene expression in healthy older men. Ten men [mean (SEM) age, 68 (2.5) yr; height, 171.5 (2.4) cm; and weight, 80 (3.0) kg] completed each of the following 1-month, double-blind interventions after a baseline (B) study in randomized order with an intervening 3-month washout: transdermal T patch (5.0 mg/daily); recombinant human GH (6.25 μg/kg sc daily); and combined hormones (GHT). ANOVA with repeated measures was used to evaluate interventional effects. Integrated serum GH concentrations [mean (SEM)] were elevated comparably by GH and GHT: [B = 363 (55), GH = 1107 (120), T = 459 (131), and GHT = 1189 (46) μg/liter-min; P < 0.0001]. Serum IGF-I concentrations also increased commensurately after GH and GHT: [B = 168 (14), GH = 285 (16), T = 192 (25), and GHT = 294 (25) μg/liter; P < 0.0001]. GHT administration increased total estradiol: [B = 110 (20), GH = 106 (13), T = 129 (13), and GHT = 153 (17) pmol/liter; P < 0.02], and both T and GHT elevated free T: [B = 12 (2.1), GH = 11 (1.5), T = 22 (2.8), and GHT = 24 (2.5) pg/ml; P < 0.0001]. No significant changes occurred in strength, flexibility, percentage body fat, or sexual function and mood. However, fat-free mass increased under combined GHT exposure: [B = 55 (1.3), GH = 56 (1.1), T = 55 (1.5), GHT = 57 (1.7) kg; P < 0.03]. Balance improved in response to GH intervention (P < 0.05), as did 30-m walk time during T and GHT interventions [B = 6.6 (0.3), GH = 6.2 (0.7), T = 5.9 (0.3), GHT = 5.5 (0.3) sec; P = 0.04] and stair climb time for all three interventions [B = 32.2 (1.4), GH = 29.8 (1.2), T = 30.5 (1.4), and GHT = 29.9 (1.2) sec (P = 0.0034), wherein the effects of GH, T, and GHT were different from that of B]. Muscle IGF-I gene expression increased by 1.9-fold during GH administration and by 2.3-fold during GHT administration (P < 0.05, compared with B). Myostatin and androgen receptor gene expression were not affected. Serum osteocalcin increased in response to the GH and GHT interventions: [B = 4.8 (0.52), GH = 5.7 (0.54), T = 4.7 (0.33), and GHT = 5.5 (0.39); P < 0.009]. There were no significant adverse events during 30 patient-months of intervention. We conclude that 1 month of GH and/or T administration improves certain measures of balance and physical performance in older men and increases muscle IGF-I gene expression.

AB - We examined the effects of GH and/or testosterone (T) administration on body composition, performance, mood, sexual function, bone turnover, and muscle-gene expression in healthy older men. Ten men [mean (SEM) age, 68 (2.5) yr; height, 171.5 (2.4) cm; and weight, 80 (3.0) kg] completed each of the following 1-month, double-blind interventions after a baseline (B) study in randomized order with an intervening 3-month washout: transdermal T patch (5.0 mg/daily); recombinant human GH (6.25 μg/kg sc daily); and combined hormones (GHT). ANOVA with repeated measures was used to evaluate interventional effects. Integrated serum GH concentrations [mean (SEM)] were elevated comparably by GH and GHT: [B = 363 (55), GH = 1107 (120), T = 459 (131), and GHT = 1189 (46) μg/liter-min; P < 0.0001]. Serum IGF-I concentrations also increased commensurately after GH and GHT: [B = 168 (14), GH = 285 (16), T = 192 (25), and GHT = 294 (25) μg/liter; P < 0.0001]. GHT administration increased total estradiol: [B = 110 (20), GH = 106 (13), T = 129 (13), and GHT = 153 (17) pmol/liter; P < 0.02], and both T and GHT elevated free T: [B = 12 (2.1), GH = 11 (1.5), T = 22 (2.8), and GHT = 24 (2.5) pg/ml; P < 0.0001]. No significant changes occurred in strength, flexibility, percentage body fat, or sexual function and mood. However, fat-free mass increased under combined GHT exposure: [B = 55 (1.3), GH = 56 (1.1), T = 55 (1.5), GHT = 57 (1.7) kg; P < 0.03]. Balance improved in response to GH intervention (P < 0.05), as did 30-m walk time during T and GHT interventions [B = 6.6 (0.3), GH = 6.2 (0.7), T = 5.9 (0.3), GHT = 5.5 (0.3) sec; P = 0.04] and stair climb time for all three interventions [B = 32.2 (1.4), GH = 29.8 (1.2), T = 30.5 (1.4), and GHT = 29.9 (1.2) sec (P = 0.0034), wherein the effects of GH, T, and GHT were different from that of B]. Muscle IGF-I gene expression increased by 1.9-fold during GH administration and by 2.3-fold during GHT administration (P < 0.05, compared with B). Myostatin and androgen receptor gene expression were not affected. Serum osteocalcin increased in response to the GH and GHT interventions: [B = 4.8 (0.52), GH = 5.7 (0.54), T = 4.7 (0.33), and GHT = 5.5 (0.39); P < 0.009]. There were no significant adverse events during 30 patient-months of intervention. We conclude that 1 month of GH and/or T administration improves certain measures of balance and physical performance in older men and increases muscle IGF-I gene expression.

UR - http://www.scopus.com/inward/record.url?scp=0036924729&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0036924729&partnerID=8YFLogxK

U2 - 10.1210/jc.2002-020098

DO - 10.1210/jc.2002-020098

M3 - Article

C2 - 12466367

AN - SCOPUS:0036924729

VL - 87

SP - 5649

EP - 5657

JO - Journal of Clinical Endocrinology and Metabolism

JF - Journal of Clinical Endocrinology and Metabolism

SN - 0021-972X

IS - 12

ER -